daDoctoR/R/rep_reg_cie.R
2019-11-08 12:22:49 +01:00

72 lines
2.0 KiB
R

#' A repeated regression function for change-in-estimate analysis
#'
#' For bivariate analyses, binary logistic or linear regression. From "Modeling and variable selection in epidemiologic analysis." - S. Greenland, 1989.
#' @param meas Effect meassure. Input as c() of columnnames, use dput().
#' @param vars variables in model. Input as c() of columnnames, use dput().
#' @param string variables to test. Input as c() of columnnames, use dput().
#' @param data data frame to pull variables from.
#' @param logistic flag to set logistic (TRUE) or linear (FALSE,standard) analysis.
#' @param cut cut value for gating if including or dropping the tested variable. As suggested bu S. Greenland (1989).
#' @keywords estimate-in-estimate
#' @export
rep_reg_cie<-function(meas,vars,string,data,cut=0.1){
require(broom)
d<-data
x<-data.frame(d[,c(string)])
v<-data.frame(d[,c(vars)])
names(v)<-c(vars)
y<-d[,c(meas)]
dt<-cbind(y,v)
c<-as.numeric(cut)
if(!is.factor(y)){
meth<-"linear regression"
e<-as.numeric(round(coef(lm(y~.,data = dt)),3))[1]
df<-data.frame(pred="base",b=e)
for(i in 1:ncol(x)){
dat<-cbind(dt,x[,i])
m<-lm(y~.,data=dat)
b<-as.numeric(round(coef(m),3))[1]
pred<-paste(names(x)[i])
df<-rbind(df,cbind(pred,b)) }
di<-as.vector(round(abs(e-as.numeric(df[-1,2]))/e,3))
dif<-c(NA,di)
t<-c(NA,ifelse(di>=c,"include","drop"))
r<-cbind(df,dif,t) }
if(is.factor(y)){
meth="logistic regression"
e<-as.numeric(round(exp(coef(glm(y~.,family=binomial(),data=dt))),3))[1]
df<-data.frame(pred="base",b=e)
for(i in 1:ncol(x)){
dat<-cbind(dt,x[,i])
m<-glm(y~.,family=binomial(),data=dat)
b<-as.numeric(round(exp(coef(m)),3))[1]
pred<-paste(names(x)[i])
df<-rbind(df,cbind(pred,b)) }
di<-as.vector(round(abs(e-as.numeric(df[-1,2]))/e,3))
dif<-c(NA,di)
t<-c(NA,ifelse(di>=c,"include","drop"))
r<-cbind(df,dif,t)
}
return(list("method"=meth,"analyses"=r))
}