mirror of
https://github.com/agdamsbo/daDoctoR.git
synced 2025-01-18 03:16:34 +01:00
troubleshooting and fixing
This commit is contained in:
parent
7902654ed7
commit
8326ed2cc0
@ -2,16 +2,12 @@ Package: daDoctoR
|
||||
Type: Package
|
||||
Title: FUNCTIONS FOR HEALTH RESEARCH
|
||||
Version: 0.1.0.9023
|
||||
Author@R: c(person("Andreas", "Gammelgaard Damsbo", email = "agdamsbo@pm.me", role = c("cre", "aut")))
|
||||
Author: c(person("Andreas", "Gammelgaard Damsbo", email = "agdamsbo@pm.me", role = c("cre", "aut")))
|
||||
Maintainer: Andreas Gammelgaard Damsbo <agdamsbo@pm.me>
|
||||
Description: I am a Danish medical doctor involved in neuropsychiatric research.
|
||||
Here I have collected functions I use for my data analysis. You are very
|
||||
welcome to get inspired or to use my work.
|
||||
Imports: broom,
|
||||
dplyr,
|
||||
epiR,
|
||||
ggplot2,
|
||||
MASS
|
||||
Imports: broom, dplyr, epiR, ggplot2, MASS
|
||||
Suggest: shiny
|
||||
License: GPL (>= 2)
|
||||
Encoding: UTF-8
|
||||
|
@ -7,9 +7,6 @@
|
||||
#' @param labels labels for all selected columns
|
||||
#' @keywords factor
|
||||
#' @export
|
||||
#' @examples
|
||||
#' col_fact()
|
||||
|
||||
|
||||
col_fact<-function(string,data,levels=NULL,labels=NULL){
|
||||
## Defining factors for columns containing string (can be vector of multiple strings), based on dplyr.
|
||||
|
@ -5,8 +5,6 @@
|
||||
#' @param data Dataframe
|
||||
#' @keywords numeric
|
||||
#' @export
|
||||
#' @examples
|
||||
#' col_num()
|
||||
|
||||
col_num<-function(string,data){
|
||||
## Defining factors for columns containing string (can be vector of multiple strings), based on dplyr
|
||||
|
@ -3,12 +3,9 @@
|
||||
#' Should be combined with "rep_olr()". The confint() function is rather slow, causing the whole function to hang when including many predictors and calculating the ORs with CI.
|
||||
#' @param meas primary outcome (factor with >2 levels).
|
||||
#' @param vars variables in model. Input as c() of columnnames, use dput().
|
||||
#' @param dta data frame to pull variables from.
|
||||
#' @param data data frame to pull variables from.
|
||||
#' @keywords olr
|
||||
#' @export
|
||||
#' @examples
|
||||
#' comb_olr()
|
||||
|
||||
|
||||
comb_olr<-function(meas,vars,data){
|
||||
require(MASS)
|
||||
|
@ -4,12 +4,10 @@
|
||||
#' @param x data as as dd/mm/yyyy.
|
||||
#' @keywords date
|
||||
#' @export
|
||||
#' @examples
|
||||
#' date_convert()
|
||||
|
||||
date_convert<-function(x)
|
||||
## Input format as dd/mm/yyyy, output is standard yyyy-mm-dd
|
||||
## Input format as dd/mm/yyyy, output is standard yyyy-mm-dd
|
||||
{
|
||||
result<-as.Date(x, format="%d/%m/%Y")
|
||||
print(result)
|
||||
}
|
||||
print(result)
|
||||
}
|
||||
|
@ -5,53 +5,51 @@
|
||||
#' @param y Allele 2.
|
||||
#' @keywords hardy-weinberg-equllibrium
|
||||
#' @export
|
||||
#' @examples
|
||||
#' hwe_allele()
|
||||
|
||||
hwe_allele<-function(x,y)
|
||||
{
|
||||
## Witten by Andreas Gammelgaard Damsbo, agdamsbo@pm.me, based on a non-working
|
||||
## applet at from http://www.husdyr.kvl.dk/htm/kc/popgen/genetik/applets/kitest.htm
|
||||
|
||||
## applet at http://www.husdyr.kvl.dk/htm/kc/popgen/genetik/applets/kitest.htm
|
||||
|
||||
all<-pmax(length(levels(factor(x))),length(levels(factor(y))))
|
||||
|
||||
|
||||
if(all==2){
|
||||
df=1
|
||||
## Biallellic system, df=1
|
||||
al1<-factor(x,labels=c("p","q"))
|
||||
al2<-factor(y,labels=c("p","q"))
|
||||
|
||||
|
||||
snp<-paste(al1,al2,sep = "_")
|
||||
snp[snp=="q_p"]<-"p_q"
|
||||
|
||||
|
||||
snp_f<-factor(snp,levels=c("p_p", "p_q", "q_q"))
|
||||
|
||||
|
||||
a<-length(snp)*2
|
||||
b<-length(snp)
|
||||
p<-(length(al1[al1=="p"])+length(al2[al2=="p"]))/a
|
||||
q<-(length(al1[al1=="q"])+length(al2[al2=="q"]))/a
|
||||
|
||||
|
||||
al_dist<-round(rbind(cbind(p*a,q*a),cbind(p*100,q*100)),1)
|
||||
al_names<-levels(factor(x))
|
||||
|
||||
|
||||
p_p<-round(p^2*b,3)
|
||||
p_q<-round(2*p*q*b,3)
|
||||
q_q<-round(q^2*b,3)
|
||||
|
||||
|
||||
hwe<-data.frame(obs=summary(snp_f),exp=rbind(p_p, p_q, q_q))
|
||||
|
||||
|
||||
hwe$dev<-hwe$obs-hwe$exp
|
||||
hwe$chi<-hwe$dev^2/hwe$exp
|
||||
|
||||
|
||||
snp_obs<-round(rbind(summary(snp_f),summary(snp_f)/length(snp_f)*100),1)
|
||||
|
||||
|
||||
snp_exp<-round(rbind(hwe$exp,hwe$exp/b*100),1)
|
||||
|
||||
|
||||
gen_names<-c(
|
||||
paste(levels(factor(x))[1],levels(factor(x))[1],sep="_"),
|
||||
paste(levels(factor(x))[1],levels(factor(x))[2],sep="_"),
|
||||
paste(levels(factor(x))[2],levels(factor(x))[2],sep="_"))
|
||||
|
||||
|
||||
chi<-sum(hwe$chi,na.rm = TRUE)
|
||||
p_v<-pchisq(chi, df=df, lower.tail=FALSE)
|
||||
}
|
||||
@ -60,39 +58,39 @@ hwe_allele<-function(x,y)
|
||||
## Triallellic system, df=3
|
||||
al1<-factor(x,labels=c("p","q","r"))
|
||||
al2<-factor(y,labels=c("p","q","r"))
|
||||
|
||||
|
||||
snp<-paste(al1,al2,sep = "_")
|
||||
snp[snp=="r_p"]<-"p_r"
|
||||
snp[snp=="r_q"]<-"q_r"
|
||||
snp[snp=="q_p"]<-"p_q"
|
||||
|
||||
|
||||
snp_f<-factor(snp,levels=c("p_p", "p_q", "q_q","p_r","q_r", "r_r"))
|
||||
|
||||
|
||||
a<-length(snp)*2
|
||||
b<-length(snp)
|
||||
p<-(length(al1[al1=="p"])+length(al2[al2=="p"]))/a
|
||||
q<-(length(al1[al1=="q"])+length(al2[al2=="q"]))/a
|
||||
r<-(length(al1[al1=="r"])+length(al2[al2=="r"]))/a
|
||||
|
||||
|
||||
al_dist<-round(rbind(cbind(p*a,q*a,r*a),cbind(p*100,q*100,r*100)),1)
|
||||
al_names<-levels(factor(x))
|
||||
|
||||
|
||||
p_p<-round(p^2*b,3)
|
||||
p_q<-round(2*p*q*b,3)
|
||||
q_q<-round(q^2*b,3)
|
||||
p_r<-round(2*r*p*b,3)
|
||||
q_r<-round(2*q*r*b,3)
|
||||
r_r<-round(r^2*b,3)
|
||||
|
||||
|
||||
hwe<-data.frame(obs=summary(snp_f),exp=rbind(p_p, p_q, q_q, p_r, q_r, r_r))
|
||||
|
||||
|
||||
hwe$dev<-hwe$obs-hwe$exp
|
||||
hwe$chi<-hwe$dev^2/hwe$exp
|
||||
|
||||
|
||||
snp_obs<-round(rbind(summary(snp_f),summary(snp_f)/length(snp_f)*100),1)
|
||||
|
||||
|
||||
snp_exp<-round(rbind(hwe$exp,hwe$exp/b*100),1)
|
||||
|
||||
|
||||
gen_names<-c(
|
||||
paste(levels(factor(x))[1],levels(factor(x))[1],sep="_"),
|
||||
paste(levels(factor(x))[1],levels(factor(x))[2],sep="_"),
|
||||
@ -100,30 +98,30 @@ hwe_allele<-function(x,y)
|
||||
paste(levels(factor(x))[1],levels(factor(x))[3],sep="_"),
|
||||
paste(levels(factor(x))[2],levels(factor(x))[3],sep="_"),
|
||||
paste(levels(factor(x))[3],levels(factor(x))[3],sep="_"))
|
||||
|
||||
|
||||
chi<-sum(hwe$chi,na.rm = TRUE)
|
||||
p_v<-pchisq(chi, df=df, lower.tail=FALSE)
|
||||
|
||||
|
||||
}
|
||||
else if (!any(all==c(2,3))){stop("This formula only works for bi- or triallellic systems")}
|
||||
|
||||
|
||||
else {stop("There was an unknown error")}
|
||||
|
||||
|
||||
colnames(al_dist)<-al_names
|
||||
colnames(snp_obs)<-gen_names
|
||||
colnames(snp_exp)<-gen_names
|
||||
|
||||
|
||||
rn<-c("N","%")
|
||||
|
||||
|
||||
rownames(al_dist)<-rn
|
||||
rownames(snp_obs)<-rn
|
||||
rownames(snp_exp)<-rn
|
||||
|
||||
|
||||
int<-ifelse(p_v<=0.05,"The null-hypothesis of difference from the HWE can be confirmed","The null-hypothesis of difference from the HWE can be rejected")
|
||||
|
||||
|
||||
t1<-"Chi-square test for Hardy-Weinberg equillibrium for a bi- or triallellic system. Read more: http://www.husdyr.kvl.dk/htm/kc/popgen/genetics/2/2.htm"
|
||||
|
||||
|
||||
list<-list(info=t1,n.total=b,allele.dist=al_dist,observed.dist=snp_obs,expected.dist=snp_exp,chi.value=chi,p.value=p_v,df=df,interpretation=int)
|
||||
|
||||
|
||||
return(list)
|
||||
}
|
||||
|
@ -3,6 +3,7 @@
|
||||
#' App to easily calculate and visualize the HWE.
|
||||
#'
|
||||
#' @export
|
||||
|
||||
hwe_app <- function() {
|
||||
appDir <- system.file("shiny-examples", "hwe_calc", package = "daDoctoR")
|
||||
if (appDir == "") {
|
||||
|
66
R/hwe_geno.R
66
R/hwe_geno.R
@ -4,100 +4,98 @@
|
||||
#' @param mm First count of genotype.
|
||||
#' @keywords hardy-weinberg-equllibrium
|
||||
#' @export
|
||||
#' @examples
|
||||
#' hwe_geno()
|
||||
|
||||
hwe_geno<-function(mm,mn,nn,mo,no,oo,alleles=2)
|
||||
{
|
||||
## x is the number of common homozygote, y the heterozygote and z the rare homozygote.
|
||||
|
||||
|
||||
if (alleles==2){
|
||||
## Biallelic has three degrees of freedom
|
||||
df=1
|
||||
|
||||
|
||||
a<-sum(mm,mn,nn)*2
|
||||
b<-sum(mm,mn,nn)
|
||||
p<-(2*mm+mn)/a
|
||||
q<-(2*nn+mn)/a
|
||||
|
||||
|
||||
al_dist<-round(rbind(cbind(p*a,q*a),cbind(p*100,q*100)),1)
|
||||
al_names<-c("m","n")
|
||||
|
||||
|
||||
p_p<-round(p^2*b,3)
|
||||
p_q<-round(2*p*q*b,3)
|
||||
q_q<-round(q^2*b,3)
|
||||
|
||||
|
||||
obs=rbind(mm,mn,nn)
|
||||
exp=rbind(p_p, p_q, q_q)
|
||||
|
||||
|
||||
hwe<-data.frame(obs,exp)
|
||||
|
||||
|
||||
hwe$dev<-hwe$obs-hwe$exp
|
||||
hwe$chi<-hwe$dev^2/hwe$exp
|
||||
|
||||
|
||||
snp_obs<-round(rbind(hwe$obs,hwe$obs/sum(hwe$obs)*100),1)
|
||||
|
||||
|
||||
snp_exp<-round(rbind(hwe$exp,hwe$exp/b*100),1)
|
||||
|
||||
|
||||
gen_names<-c("mm","mn","nn")
|
||||
|
||||
|
||||
chi<-sum(hwe$chi,na.rm = TRUE)
|
||||
|
||||
|
||||
p_v<-pchisq(chi, df=df, lower.tail=FALSE)
|
||||
}
|
||||
if(alleles==3){
|
||||
## Triallelic has three degrees of freedom
|
||||
df=3
|
||||
|
||||
|
||||
a<-sum(mm,mn,nn,mo,no,oo)*2
|
||||
b<-sum(mm,mn,nn,mo,no,oo)
|
||||
p<-(2*mm+mn+mo)/a
|
||||
q<-(2*nn+mn+no)/a
|
||||
r<-(2*oo+no+mo)/a
|
||||
|
||||
|
||||
al_dist<-round(rbind(cbind(p*a,q*a,r*a),cbind(p*100,q*100,r*100)),1)
|
||||
al_names<-c("m","n","o")
|
||||
|
||||
|
||||
p_p<-round(p^2*b,3)
|
||||
p_q<-round(2*p*q*b,3)
|
||||
q_q<-round(q^2*b,3)
|
||||
p_r<-round(2*r*p*b,3)
|
||||
q_r<-round(2*q*r*b,3)
|
||||
r_r<-round(r^2*b,3)
|
||||
|
||||
|
||||
obs=rbind(mm,mn,nn,mo,no,oo)
|
||||
exp=rbind(p_p, p_q, q_q, p_r, q_r, r_r)
|
||||
|
||||
|
||||
hwe<-data.frame(obs,exp)
|
||||
|
||||
|
||||
hwe$dev<-hwe$obs-hwe$exp
|
||||
hwe$chi<-hwe$dev^2/hwe$exp
|
||||
|
||||
|
||||
snp_obs<-round(rbind(hwe$obs,hwe$obs/sum(hwe$obs)*100),1)
|
||||
|
||||
|
||||
snp_exp<-round(rbind(hwe$exp,hwe$exp/b*100),1)
|
||||
|
||||
|
||||
gen_names<-c("mm","mn","nn", "mo", "no", "oo")
|
||||
|
||||
|
||||
chi<-sum(hwe$chi,na.rm = TRUE)
|
||||
|
||||
p_v<-pchisq(chi, df=df, lower.tail=FALSE)
|
||||
|
||||
p_v<-pchisq(chi, df=df, lower.tail=FALSE)
|
||||
}
|
||||
|
||||
|
||||
|
||||
|
||||
colnames(al_dist)<-al_names
|
||||
colnames(snp_obs)<-gen_names
|
||||
colnames(snp_exp)<-gen_names
|
||||
|
||||
|
||||
rownames(al_dist)<-c("N","%")
|
||||
rownames(snp_obs)<-c("N","%")
|
||||
rownames(snp_exp)<-c("N","%")
|
||||
|
||||
|
||||
int<-ifelse(p_v<=0.05,"The null-hypothesis of difference from the HWE can be confirmed","The null-hypothesis of difference from the HWE can be rejected")
|
||||
|
||||
|
||||
t1<-"Chi-square test for Hardy-Weinberg equillibrium for a bi- or triallellic system. Theory: http://www.husdyr.kvl.dk/htm/kc/popgen/genetics/2/2.htm"
|
||||
|
||||
|
||||
list<-list(info=t1,n.total=b,allele.dist=al_dist,observed.dist=snp_obs,expected.dist=snp_exp,chi.value=chi,p.value=p_v,df=df,interpretation=int)
|
||||
|
||||
|
||||
return(list)
|
||||
}
|
||||
}
|
||||
|
@ -6,8 +6,6 @@
|
||||
#' @param f factor for grouping.
|
||||
#' @keywords hardy-weinberg-equllibrium
|
||||
#' @export
|
||||
#' @examples
|
||||
#' hwe_sum()
|
||||
|
||||
hwe_sum<-function (a1, a2, f) {
|
||||
require(daDoctoR)
|
||||
|
@ -11,8 +11,6 @@
|
||||
#' @param input can be either "model", which is a olr model (polr()), or "df", which is a dataframe whith three columns for OR, lower CI and upper CI-
|
||||
#' @keywords forestplot
|
||||
#' @export
|
||||
#' @examples
|
||||
#' plot_ord_odds()
|
||||
|
||||
plot_ord_odds<-function(x, title = NULL,dec=3,lbls=NULL,hori="OR (95 % CI)",vert="Variables",short=FALSE,input="model"){
|
||||
|
||||
|
@ -9,8 +9,6 @@
|
||||
#' @param logistic flag for logistic binomial regression or not (linear is then selected).
|
||||
#' @keywords logistic regression
|
||||
#' @export
|
||||
#' @examples
|
||||
#' rep_biv()
|
||||
|
||||
rep_biv<-function(y,v1,string,data,method="pval",logistic=FALSE,ci=FALSE,cut=0.1,v2=NULL,v3=NULL){
|
||||
|
||||
|
@ -7,9 +7,6 @@
|
||||
#' @param data dataframe to draw variables from.
|
||||
#' @keywords ppv npv sensitivity specificity
|
||||
#' @export
|
||||
#' @examples
|
||||
#' rep_epi_tests()
|
||||
|
||||
|
||||
rep_epi_tests<-function(gold,test,data){
|
||||
require(epiR)
|
||||
|
15
R/rep_glm.R
15
R/rep_glm.R
@ -5,20 +5,19 @@
|
||||
#' @param vars variables in model. Input as c() of columnnames, use dput().
|
||||
#' @param string variables to test. Input as c() of columnnames, use dput().
|
||||
#' @param ci flag to get results as OR with 95% confidence interval.
|
||||
#' @param data data frame to pull variables from.
|
||||
#' @param data dataframe to pull variables from.
|
||||
#' @param fixed.var flag to set "vars" as fixed in the model. When FALSE, then true bivariate logistic regression is performed.
|
||||
#' @keywords logistic
|
||||
#' @export
|
||||
#' @examples
|
||||
#' rep_glm()
|
||||
|
||||
rep_glm<-function(meas,vars=NULL,string,ci=FALSE,data,fixed.var=FALSE){
|
||||
|
||||
rep_glm<-function(meas,vars=NULL,string,ci=FALSE,data,fixed.var=FALSE)
|
||||
{
|
||||
## Intro and definitions
|
||||
require(broom)
|
||||
y<-data[,c(meas)]
|
||||
|
||||
## Factor check
|
||||
if(!is.factor(y)){stop("y is not a factor")}
|
||||
|
||||
## Running "true" bivariate analysis
|
||||
if (fixed.var==FALSE){
|
||||
d<-data
|
||||
x<-data.frame(d[,c(vars,string)])
|
||||
@ -85,7 +84,7 @@ rep_glm<-function(meas,vars=NULL,string,ci=FALSE,data,fixed.var=FALSE){
|
||||
r<-data.frame(df[,1:2],pa,t)[-1,]
|
||||
}
|
||||
|
||||
|
||||
## Running multivariate analyses (eg "bivariate" analyses with fixed variables)
|
||||
if (fixed.var==TRUE){
|
||||
d<-data
|
||||
x<-data.frame(d[,c(string)])
|
||||
|
@ -5,12 +5,10 @@
|
||||
#' @param vars variables in model. Input as c() of columnnames, use dput().
|
||||
#' @param string variables to test. Input as c() of columnnames, use dput().
|
||||
#' @param ci flag to get results as OR with 95% confidence interval.
|
||||
#' @param fixed.var flag to set "vars" as fixed in the model. When FALSE, then true bivariate linear regression is performed.
|
||||
#' @param data data frame to pull variables from.
|
||||
#' @keywords linear
|
||||
#' @param fixed.var flag to set "vars" as fixed in the model. When FALSE, then true bivariate linear regression is performed.
|
||||
#' @keywords linear regression
|
||||
#' @export
|
||||
#' @examples
|
||||
#' rep_lm()
|
||||
|
||||
rep_lm<-function(meas,vars=NULL,string,ci=FALSE,data,fixed.var=FALSE){
|
||||
|
||||
|
@ -5,12 +5,9 @@
|
||||
#' @param vars variables in model. Input as c() of columnnames, use dput().
|
||||
#' @param string variables to test. Input as c() of columnnames, use dput().
|
||||
#' @param ci flag to get results as OR with 95% confidence interval.
|
||||
#' @param dta data frame to pull variables from.
|
||||
#' @param data data frame to pull variables from.
|
||||
#' @keywords olr
|
||||
#' @export
|
||||
#' @examples
|
||||
#' rep_olr()
|
||||
|
||||
|
||||
rep_olr<-function(meas,vars,string,ci=FALSE,data){
|
||||
|
||||
|
@ -6,9 +6,6 @@
|
||||
#' @param dta data frame to pull variables from.
|
||||
#' @keywords olr
|
||||
#' @export
|
||||
#' @examples
|
||||
#' rep_olr_sngl()
|
||||
|
||||
|
||||
rep_olr_sngl<-function(meas,vars,data){
|
||||
require(MASS)
|
||||
|
@ -9,8 +9,6 @@
|
||||
#' @param cut cut value for gating if including or dropping the tested variable. As suggested bu S. Greenland (1989).
|
||||
#' @keywords estimate-in-estimate
|
||||
#' @export
|
||||
#' @examples
|
||||
#' rep_reg_cie()
|
||||
|
||||
rep_reg_cie<-function(meas,vars,string,data,cut=0.1){
|
||||
|
||||
|
@ -9,8 +9,6 @@
|
||||
#' @param dec decimals for results, standard is set to 2. Mean and sd is dec-1. pval has 3 decimals.
|
||||
#' @keywords strobe
|
||||
#' @export
|
||||
#' @examples
|
||||
#' strobe_diff_bygroup()
|
||||
|
||||
strobe_diff_bygroup<-function(meas,var,group,adj,data,dec=2){
|
||||
|
||||
|
@ -9,8 +9,6 @@
|
||||
#' @param dec decimals for results, standard is set to 2. Mean and sd is dec-1.
|
||||
#' @keywords strobe
|
||||
#' @export
|
||||
#' @examples
|
||||
#' strobe_diff_byvar()
|
||||
|
||||
strobe_diff_byvar<-function(meas,var,group,adj,data,dec=2){
|
||||
|
||||
|
@ -8,8 +8,6 @@
|
||||
#' @param dec decimals for results, standard is set to 2. Mean and sd is dec-1.
|
||||
#' @keywords strobe
|
||||
#' @export
|
||||
#' @examples
|
||||
#' strobe_diff_twodim()
|
||||
|
||||
strobe_diff_twodim<-function(meas,group,adj,data,dec=2){
|
||||
## meas: sdmt
|
||||
|
@ -8,8 +8,6 @@
|
||||
#' @param dec decimals for results, standard is set to 2. Mean and sd is dec-1.
|
||||
#' @keywords logistic
|
||||
#' @export
|
||||
#' @examples
|
||||
#' strobe_log()
|
||||
|
||||
strobe_log<-function(meas,var,adj,data,dec=2){
|
||||
## Ønskeliste:
|
||||
|
@ -7,8 +7,6 @@
|
||||
#' @param dec decimals for results, standard is set to 2. Mean and sd is dec-1.
|
||||
#' @keywords olr
|
||||
#' @export
|
||||
#' @examples
|
||||
#' strobe_olr()
|
||||
|
||||
strobe_olr<-function(meas,vars,data,dec=2){
|
||||
|
||||
|
@ -8,8 +8,6 @@
|
||||
#' @param n.by.adj flag to indicate wether to count number of patients in adjusted model or overall for outcome meassure not NA.
|
||||
#' @keywords logistic
|
||||
#' @export
|
||||
#' @examples
|
||||
#' strobe_pred()
|
||||
|
||||
strobe_pred<-function(meas,adj,data,dec=2,n.by.adj=FALSE){
|
||||
## Ønskeliste:
|
||||
|
@ -19,3 +19,4 @@ BuildType: Package
|
||||
PackageUseDevtools: Yes
|
||||
PackageInstallArgs: --no-multiarch --with-keep.source
|
||||
PackageCheckArgs: --as-cran
|
||||
PackageRoxygenize: rd,collate,namespace,vignette
|
||||
|
@ -18,7 +18,4 @@ col_fact(string, data, levels = NULL, labels = NULL)
|
||||
\description{
|
||||
Depending on dply's contains()-function.
|
||||
}
|
||||
\examples{
|
||||
col_fact()
|
||||
}
|
||||
\keyword{factor}
|
||||
|
@ -14,7 +14,4 @@ col_num(string, data)
|
||||
\description{
|
||||
Depending on dply's contains()-function.
|
||||
}
|
||||
\examples{
|
||||
col_num()
|
||||
}
|
||||
\keyword{numeric}
|
||||
|
@ -11,12 +11,9 @@ comb_olr(meas, vars, data)
|
||||
|
||||
\item{vars}{variables in model. Input as c() of columnnames, use dput().}
|
||||
|
||||
\item{dta}{data frame to pull variables from.}
|
||||
\item{data}{data frame to pull variables from.}
|
||||
}
|
||||
\description{
|
||||
Should be combined with "rep_olr()". The confint() function is rather slow, causing the whole function to hang when including many predictors and calculating the ORs with CI.
|
||||
}
|
||||
\examples{
|
||||
comb_olr()
|
||||
}
|
||||
\keyword{olr}
|
||||
|
@ -12,7 +12,4 @@ date_convert(x)
|
||||
\description{
|
||||
Input format as dd/mm/yyyy, output is standard yyyy-mm-dd
|
||||
}
|
||||
\examples{
|
||||
date_convert()
|
||||
}
|
||||
\keyword{date}
|
||||
|
@ -14,7 +14,4 @@ hwe_allele(x, y)
|
||||
\description{
|
||||
For easy calculation.
|
||||
}
|
||||
\examples{
|
||||
hwe_allele()
|
||||
}
|
||||
\keyword{hardy-weinberg-equllibrium}
|
||||
|
@ -12,7 +12,4 @@ hwe_geno(mm, mn, nn, mo, no, oo, alleles = 2)
|
||||
\description{
|
||||
For easy calculation.
|
||||
}
|
||||
\examples{
|
||||
hwe_geno()
|
||||
}
|
||||
\keyword{hardy-weinberg-equllibrium}
|
||||
|
@ -16,7 +16,4 @@ hwe_sum(a1, a2, f)
|
||||
\description{
|
||||
For easy printing.
|
||||
}
|
||||
\examples{
|
||||
hwe_sum()
|
||||
}
|
||||
\keyword{hardy-weinberg-equllibrium}
|
||||
|
@ -28,7 +28,4 @@ plot_ord_odds(x, title = NULL, dec = 3, lbls = NULL,
|
||||
\description{
|
||||
Heavily inspired by https://www.r-bloggers.com/plotting-odds-ratios-aka-a-forrestplot-with-ggplot2/
|
||||
}
|
||||
\examples{
|
||||
plot_ord_odds()
|
||||
}
|
||||
\keyword{forestplot}
|
||||
|
@ -23,8 +23,5 @@ rep_biv(y, v1, string, data, method = "pval", logistic = FALSE,
|
||||
\description{
|
||||
For bivariate analyses, for gating by p-value or change-in-estimate.
|
||||
}
|
||||
\examples{
|
||||
rep_biv()
|
||||
}
|
||||
\keyword{logistic}
|
||||
\keyword{regression}
|
||||
|
@ -19,9 +19,6 @@ For bivariate analyses. The confint() function is rather slow, causing the whole
|
||||
\details{
|
||||
Repeats the epi.tests from the epiR package. Either gs or test should be of length 1.
|
||||
}
|
||||
\examples{
|
||||
rep_epi_tests()
|
||||
}
|
||||
\keyword{npv}
|
||||
\keyword{ppv}
|
||||
\keyword{sensitivity}
|
||||
|
@ -16,14 +16,11 @@ rep_glm(meas, vars = NULL, string, ci = FALSE, data,
|
||||
|
||||
\item{ci}{flag to get results as OR with 95% confidence interval.}
|
||||
|
||||
\item{data}{data frame to pull variables from.}
|
||||
\item{data}{dataframe to pull variables from.}
|
||||
|
||||
\item{fixed.var}{flag to set "vars" as fixed in the model. When FALSE, then true bivariate logistic regression is performed.}
|
||||
}
|
||||
\description{
|
||||
For bivariate analyses. The confint() function is rather slow, causing the whole function to hang when including many predictors and calculating the ORs with CI.
|
||||
}
|
||||
\examples{
|
||||
rep_glm()
|
||||
}
|
||||
\keyword{logistic}
|
||||
|
@ -23,7 +23,5 @@ rep_lm(meas, vars = NULL, string, ci = FALSE, data,
|
||||
\description{
|
||||
For bivariate analyses, to determine which variables to include in adjusted model.
|
||||
}
|
||||
\examples{
|
||||
rep_lm()
|
||||
}
|
||||
\keyword{linear}
|
||||
\keyword{regression}
|
||||
|
@ -15,12 +15,9 @@ rep_olr(meas, vars, string, ci = FALSE, data)
|
||||
|
||||
\item{ci}{flag to get results as OR with 95% confidence interval.}
|
||||
|
||||
\item{dta}{data frame to pull variables from.}
|
||||
\item{data}{data frame to pull variables from.}
|
||||
}
|
||||
\description{
|
||||
For bivariate analyses. The confint() function is rather slow, causing the whole function to hang when including many predictors and calculating the ORs with CI.
|
||||
}
|
||||
\examples{
|
||||
rep_olr()
|
||||
}
|
||||
\keyword{olr}
|
||||
|
@ -16,7 +16,4 @@ rep_olr_sngl(meas, vars, data)
|
||||
\description{
|
||||
Should be combined with "rep_olr()". For bivariate analyses. The confint() function is rather slow, causing the whole function to hang when including many predictors and calculating the ORs with CI.
|
||||
}
|
||||
\examples{
|
||||
rep_olr_sngl()
|
||||
}
|
||||
\keyword{olr}
|
||||
|
@ -22,7 +22,4 @@ rep_reg_cie(meas, vars, string, data, cut = 0.1)
|
||||
\description{
|
||||
For bivariate analyses, binary logistic or linear regression. From "Modeling and variable selection in epidemiologic analysis." - S. Greenland, 1989.
|
||||
}
|
||||
\examples{
|
||||
rep_reg_cie()
|
||||
}
|
||||
\keyword{estimate-in-estimate}
|
||||
|
@ -22,7 +22,4 @@ strobe_diff_bygroup(meas, var, group, adj, data, dec = 2)
|
||||
\description{
|
||||
Printable table of three dimensional regression analysis of group vs var for meas. By group.
|
||||
}
|
||||
\examples{
|
||||
strobe_diff_bygroup()
|
||||
}
|
||||
\keyword{strobe}
|
||||
|
@ -22,7 +22,4 @@ strobe_diff_byvar(meas, var, group, adj, data, dec = 2)
|
||||
\description{
|
||||
Printable table of three dimensional regression analysis of group vs var for meas. By var. Includes p-values.
|
||||
}
|
||||
\examples{
|
||||
strobe_diff_byvar()
|
||||
}
|
||||
\keyword{strobe}
|
||||
|
@ -20,7 +20,4 @@ strobe_diff_twodim(meas, group, adj, data, dec = 2)
|
||||
\description{
|
||||
Printable table of regression analysis by group for meas. Detects wether to perform logistic or linear regression.
|
||||
}
|
||||
\examples{
|
||||
strobe_diff_twodim()
|
||||
}
|
||||
\keyword{strobe}
|
||||
|
@ -20,7 +20,4 @@ strobe_log(meas, var, adj, data, dec = 2)
|
||||
\description{
|
||||
Printable table of logistic regression analysis according to STROBE.
|
||||
}
|
||||
\examples{
|
||||
strobe_log()
|
||||
}
|
||||
\keyword{logistic}
|
||||
|
@ -18,7 +18,4 @@ strobe_olr(meas, vars, data, dec = 2)
|
||||
\description{
|
||||
Printable table of logistic regression analysis oaccording to STROBE.
|
||||
}
|
||||
\examples{
|
||||
strobe_olr()
|
||||
}
|
||||
\keyword{olr}
|
||||
|
@ -20,7 +20,4 @@ strobe_pred(meas, adj, data, dec = 2, n.by.adj = FALSE)
|
||||
\description{
|
||||
Printable table of logistic regression analysis according to STROBE.
|
||||
}
|
||||
\examples{
|
||||
strobe_pred()
|
||||
}
|
||||
\keyword{logistic}
|
||||
|
13
packing.R
13
packing.R
@ -1,13 +0,0 @@
|
||||
library(roxygen2)
|
||||
library(devtools)
|
||||
|
||||
source("/Users/andreas/Documents/GitHub/daDoctoR/updatePackageVersion.R")
|
||||
|
||||
setwd("/Users/andreas/Documents/GitHub/daDoctoR")
|
||||
|
||||
updatePackageVersion()
|
||||
|
||||
document()
|
||||
|
||||
|
||||
# Inspiration: "https://hilaryparker.com/2014/04/29/writing-an-r-package-from-scratch/"
|
@ -1,3 +0,0 @@
|
||||
## Looking for errors in code
|
||||
|
||||
for (f in list.files("/Users/andreas/Documents/GitHub/daDoctoR/R", full.names=TRUE)) parse(f)
|
@ -1,13 +0,0 @@
|
||||
# Install new version
|
||||
|
||||
# Remove
|
||||
|
||||
remove.packages("daDoctoR")
|
||||
.rs.restartR()
|
||||
|
||||
|
||||
setwd("/")
|
||||
devtools::install_github('agdamsbo/daDoctoR')
|
||||
|
||||
library(daDoctoR)
|
||||
|
@ -1,35 +0,0 @@
|
||||
updatePackageVersion <- function(packageLocation ="."){
|
||||
## Seen at: https://www.mango-solutions.com/blog/how-to-auto-update-a-package-version-number
|
||||
|
||||
## Read DESCRIPTION file
|
||||
desc <- readLines(file.path(packageLocation, "DESCRIPTION"))
|
||||
|
||||
## Find the line where the version is defined
|
||||
vLine <- grep("^Version\\:", desc)
|
||||
|
||||
## Extract version number
|
||||
vNumber <- gsub("^Version\\:\\s*", "", desc[vLine])
|
||||
|
||||
## Split the version number into two; a piece to keep, a piece to increment
|
||||
versionNumber <- strsplit(vNumber, "\\.")[[1]]
|
||||
versionParts <- length(versionNumber)
|
||||
vNumberKeep <- paste(versionNumber[1:(versionParts-1)], sep= "", collapse= ".")
|
||||
vNumberUpdate <- versionNumber[versionParts]
|
||||
|
||||
## Replace old version number with new one (increment by 1)
|
||||
oldVersion <- as.numeric(vNumberUpdate)
|
||||
newVersion <- oldVersion + 1
|
||||
|
||||
## Build final version number
|
||||
vFinal <- paste(vNumberKeep, newVersion, sep = ".")
|
||||
|
||||
## Update DESCRIPTION file (in R)
|
||||
desc[vLine] <- paste0("Version: ", vFinal )
|
||||
|
||||
## Update the actual DESCRIPTION file
|
||||
writeLines(desc, file.path(packageLocation, "DESCRIPTION"))
|
||||
|
||||
## Return the updated version number to screen
|
||||
return(vFinal)
|
||||
}
|
||||
|
Loading…
x
Reference in New Issue
Block a user