mirror of
https://github.com/agdamsbo/daDoctoR.git
synced 2024-11-21 19:30:22 +01:00
148 lines
5.1 KiB
R
148 lines
5.1 KiB
R
#' Print regression results in table
|
|
#'
|
|
#' New function ready for revision / rewrite
|
|
#'
|
|
#' Printable table of two dimensional regression analysis of group vs variable for outcome measure. By group. Includes p-value
|
|
#' Group and variable has to be dichotomous factor.
|
|
#' @param meas outcome measure variable name in data-data.frame as a string. Can be numeric or factor. Result is calculated accordingly.
|
|
#' @param var binary exposure variable to compare against (active vs placebo). As string. Horisontal.
|
|
#' @param group binary stratum to compare, as string. Vertical.
|
|
#' @param adj variables to adjust for, as string.
|
|
#' @param data dataframe to subset from.
|
|
#' @param dec decimals for results, standard is set to 2. Mean and sd is dec-1. pval has 3 decimals.
|
|
#' @keywords print stratum
|
|
#' @export
|
|
#' @examples
|
|
#' data('mtcars')
|
|
#' mtcars$vs<-factor(mtcars$vs)
|
|
#' mtcars$am<-factor(mtcars$am)
|
|
#' print_diff_bygroup(meas="mpg",var="vs",group = "am",adj=c("disp","wt"),data=mtcars)
|
|
|
|
print_diff_bygroup<-function(meas,var,group,adj,data,dec=2){
|
|
## meas: sdmt
|
|
## var: rtreat
|
|
## group: genotype
|
|
## for dichotome exposure variable (var)
|
|
|
|
d <- data
|
|
m <- d[, c(meas)]
|
|
v <- d[, c(var)]
|
|
g <- d[, c(group)]
|
|
ads <- d[, c(adj)]
|
|
dat <- data.frame(m, v, g, ads)
|
|
df <- data.frame(matrix(ncol = 9))
|
|
if (!is.factor(m)) {
|
|
for (i in 1:length(levels(g))) {
|
|
grp <- levels(dat$g)[i]
|
|
di <- dat[dat$g == grp, ][, -3]
|
|
mod <- lm(m ~ v, data = di)
|
|
|
|
p <- coef(summary(mod))[2,4]
|
|
p<-ifelse(p<0.001,"<0.001",round(p,3))
|
|
p <- ifelse(p<=0.05|p=="<0.001",paste0("*",p),
|
|
ifelse(p>0.05&p<=0.1,paste0(".",p),p))
|
|
pv<-p
|
|
|
|
co<-round(coef(mod),dec)[2]
|
|
ci<-round(confint(mod),dec)[2,]
|
|
lo<-ci[1]
|
|
up<-ci[2]
|
|
ci<-paste0(co," (",lo," to ",up,")")
|
|
|
|
amod <- lm(m ~ ., data = di)
|
|
pa <- coef(summary(amod))[2,4]
|
|
pa<-ifelse(pa<0.001,"<0.001",round(pa,3))
|
|
pa <- ifelse(pa<=0.05|pa=="<0.001",paste0("*",pa),
|
|
ifelse(pa>0.05&pa<=0.1,paste0(".",pa),pa))
|
|
apv<-pa
|
|
|
|
aco<-round(coef(amod),dec)[2]
|
|
aci<-round(confint(amod),dec)[2,]
|
|
alo<-aci[1]
|
|
aup<-aci[2]
|
|
aci<-paste0(aco," (",alo," to ",aup,")")
|
|
|
|
nr <- c()
|
|
for (r in 1:2) {
|
|
vr <- levels(di$v)[r]
|
|
dr <- di[di$v == vr, ]
|
|
n <- as.numeric(nrow(dr[!is.na(dr$m), ]))
|
|
mean <- round(mean(dr$m, na.rm = TRUE), dec -
|
|
1)
|
|
sd <- round(sd(dr$m, na.rm = TRUE), dec - 1)
|
|
ms <- paste0(mean, " (", sd, ")")
|
|
nr <- c(nr, n, ms)
|
|
}
|
|
irl <- c(grp, nr, ci, pv, aci, apv)
|
|
df <- rbind(df, irl)
|
|
names(df) <- c("grp",
|
|
paste0("N.", substr(levels(v)[1], 1, 3)),
|
|
paste0("M.", substr(levels(v)[1], 1, 3)),
|
|
paste0("N.", substr(levels(v)[2], 1, 3)),
|
|
paste0("M.", substr(levels(v)[2], 1, 3)),
|
|
"diff",
|
|
"pval",
|
|
"ad.diff",
|
|
"ad.pval")
|
|
}
|
|
}
|
|
if (is.factor(m)) {
|
|
for (i in 1:length(levels(g))) {
|
|
grp <- levels(dat$g)[i]
|
|
di <- dat[dat$g == grp, ][, -3]
|
|
|
|
mod <- glm(m ~ v, family = binomial(), data = di)
|
|
|
|
p <- coef(summary(mod))[2,4]
|
|
p<-ifelse(p<0.001,"<0.001",round(p,3))
|
|
p <- ifelse(p<=0.05|p=="<0.001",paste0("*",p),
|
|
ifelse(p>0.05&p<=0.1,paste0(".",p),p))
|
|
pv<-p
|
|
|
|
co <- round(exp(coef(mod)[-1]), dec)
|
|
ci<-round(exp(confint(mod)),dec)[2,]
|
|
lo<-ci[1]
|
|
up<-ci[2]
|
|
ci <- paste0(co, " (", lo, " to ", up, ")")
|
|
|
|
amod <- glm(m ~ ., family = binomial(), data = di)
|
|
|
|
pa <- coef(summary(amod))[2,4]
|
|
pa<-ifelse(pa<0.001,"<0.001",round(pa,3))
|
|
pa <- ifelse(pa<=0.05|pa=="<0.001",paste0("*",pa),
|
|
ifelse(pa>0.05&pa<=0.1,paste0(".",pa),pa))
|
|
apv<-pa
|
|
|
|
aco <- round(exp(coef(amod)[2]), dec)
|
|
aci<-suppressMessages(round(exp(confint(amod)),dec))[2,]
|
|
alo<-aci[1]
|
|
aup<-aci[2]
|
|
aci <- paste0(aco, " (", alo, " to ", aup, ")")
|
|
nr <- c()
|
|
|
|
for (r in 1:2) {
|
|
vr <- levels(di$v)[r]
|
|
dr <- di[di$v == vr, ]
|
|
n <- as.numeric(nrow(dr[!is.na(dr$m), ]))
|
|
nl <- levels(m)[2]
|
|
out <- nrow(dr[dr$m == nl & !is.na(dr$m), ])
|
|
pro <- round(out/n * 100, 0)
|
|
rt <- paste0(out, " (", pro, "%)")
|
|
nr <- c(nr, n, rt)
|
|
}
|
|
irl <- c(grp, nr, ci, pv, aci, apv)
|
|
df <- rbind(df, irl)
|
|
names(df) <- c("grp",
|
|
paste0("N.", substr(levels(v)[1], 1, 3)),
|
|
paste0(nl, ".", substr(levels(v)[1], 1, 3)),
|
|
paste0("N.", substr(levels(v)[2], 1, 3)),
|
|
paste0(nl, ".", substr(levels(v)[2], 1, 3)),
|
|
"OR",
|
|
"pval",
|
|
"ad.OR",
|
|
"ad.pval")
|
|
}
|
|
}
|
|
return(df)
|
|
}
|