#' Print regression results in table #' #' New function ready for revision / rewrite #' #' Printable table of two dimensional regression analysis of group vs variable for outcome measure. By group. Includes p-value #' Group and variable has to be dichotomous factor. #' @param meas outcome measure variable name in data-data.frame as a string. Can be numeric or factor. Result is calculated accordingly. #' @param var binary exposure variable to compare against (active vs placebo). As string. Horisontal. #' @param group binary stratum to compare, as string. Vertical. #' @param adj variables to adjust for, as string. #' @param data dataframe to subset from. #' @param dec decimals for results, standard is set to 2. Mean and sd is dec-1. pval has 3 decimals. #' @keywords print stratum #' @export #' @examples #' data('mtcars') #' mtcars$vs<-factor(mtcars$vs) #' mtcars$am<-factor(mtcars$am) #' print_diff_bygroup(meas="mpg",var="vs",group = "am",adj=c("disp","wt"),data=mtcars) print_diff_bygroup<-function(meas,var,group,adj,data,dec=2){ ## meas: sdmt ## var: rtreat ## group: genotype ## for dichotome exposure variable (var) d <- data m <- d[, c(meas)] v <- d[, c(var)] g <- d[, c(group)] ads <- d[, c(adj)] dat <- data.frame(m, v, g, ads) df <- data.frame(matrix(ncol = 9)) if (!is.factor(m)) { for (i in 1:length(levels(g))) { grp <- levels(dat$g)[i] di <- dat[dat$g == grp, ][, -3] mod <- lm(m ~ v, data = di) p <- coef(summary(mod))[2,4] p<-ifelse(p<0.001,"<0.001",round(p,3)) p <- ifelse(p<=0.05|p=="<0.001",paste0("*",p), ifelse(p>0.05&p<=0.1,paste0(".",p),p)) pv<-p co<-round(coef(mod),dec)[2] ci<-round(confint(mod),dec)[2,] lo<-ci[1] up<-ci[2] ci<-paste0(co," (",lo," to ",up,")") amod <- lm(m ~ ., data = di) pa <- coef(summary(amod))[2,4] pa<-ifelse(pa<0.001,"<0.001",round(pa,3)) pa <- ifelse(pa<=0.05|pa=="<0.001",paste0("*",pa), ifelse(pa>0.05&pa<=0.1,paste0(".",pa),pa)) apv<-pa aco<-round(coef(amod),dec)[2] aci<-round(confint(amod),dec)[2,] alo<-aci[1] aup<-aci[2] aci<-paste0(aco," (",alo," to ",aup,")") nr <- c() for (r in 1:2) { vr <- levels(di$v)[r] dr <- di[di$v == vr, ] n <- as.numeric(nrow(dr[!is.na(dr$m), ])) mean <- round(mean(dr$m, na.rm = TRUE), dec - 1) sd <- round(sd(dr$m, na.rm = TRUE), dec - 1) ms <- paste0(mean, " (", sd, ")") nr <- c(nr, n, ms) } irl <- c(grp, nr, ci, pv, aci, apv) df <- rbind(df, irl) names(df) <- c("grp", paste0("N.", substr(levels(v)[1], 1, 3)), paste0("M.", substr(levels(v)[1], 1, 3)), paste0("N.", substr(levels(v)[2], 1, 3)), paste0("M.", substr(levels(v)[2], 1, 3)), "diff", "pval", "ad.diff", "ad.pval") } } if (is.factor(m)) { for (i in 1:length(levels(g))) { grp <- levels(dat$g)[i] di <- dat[dat$g == grp, ][, -3] mod <- glm(m ~ v, family = binomial(), data = di) p <- coef(summary(mod))[2,4] p<-ifelse(p<0.001,"<0.001",round(p,3)) p <- ifelse(p<=0.05|p=="<0.001",paste0("*",p), ifelse(p>0.05&p<=0.1,paste0(".",p),p)) pv<-p co <- round(exp(coef(mod)[-1]), dec) ci<-round(exp(confint(mod)),dec)[2,] lo<-ci[1] up<-ci[2] ci <- paste0(co, " (", lo, " to ", up, ")") amod <- glm(m ~ ., family = binomial(), data = di) pa <- coef(summary(amod))[2,4] pa<-ifelse(pa<0.001,"<0.001",round(pa,3)) pa <- ifelse(pa<=0.05|pa=="<0.001",paste0("*",pa), ifelse(pa>0.05&pa<=0.1,paste0(".",pa),pa)) apv<-pa aco <- round(exp(coef(amod)[2]), dec) aci<-suppressMessages(round(exp(confint(amod)),dec))[2,] alo<-aci[1] aup<-aci[2] aci <- paste0(aco, " (", alo, " to ", aup, ")") nr <- c() for (r in 1:2) { vr <- levels(di$v)[r] dr <- di[di$v == vr, ] n <- as.numeric(nrow(dr[!is.na(dr$m), ])) nl <- levels(m)[2] out <- nrow(dr[dr$m == nl & !is.na(dr$m), ]) pro <- round(out/n * 100, 0) rt <- paste0(out, " (", pro, "%)") nr <- c(nr, n, rt) } irl <- c(grp, nr, ci, pv, aci, apv) df <- rbind(df, irl) names(df) <- c("grp", paste0("N.", substr(levels(v)[1], 1, 3)), paste0(nl, ".", substr(levels(v)[1], 1, 3)), paste0("N.", substr(levels(v)[2], 1, 3)), paste0(nl, ".", substr(levels(v)[2], 1, 3)), "OR", "pval", "ad.OR", "ad.pval") } } return(df) }