daDoctoR/R/strobe_pred.R

137 lines
3.5 KiB
R
Raw Normal View History

2018-10-11 16:31:46 +02:00
#' Logistic regression of predictors according to STROBE
#'
#' Printable table of logistic regression analysis according to STROBE.
#' @param meas binary outcome meassure variable, column name in data.frame as a string. Can be numeric or factor. Result is calculated accordingly.
#' @param adj variables to adjust for, as string.
#' @param data dataframe of data.
#' @param dec decimals for results, standard is set to 2. Mean and sd is dec-1.
#' @keywords logistic
#' @export
#' @examples
#' strobe_pred()
strobe_pred<-function(meas,adj,data,dec=2){
## Ønskeliste:
##
## - Sum af alle, der indgår (Overall N)
## - Ryd op i kode, der der er overflødig %-regning, alternativt, så fiks at NA'er ikke skal regnes med.
##
require(dplyr)
d<-data
m<-d[,c(meas)]
ads<-d[,c(adj)]
## Crude ORs
dfcr<-data.frame(matrix(NA,ncol = 3))
names(dfcr)<-c("pred","or_ci","pv")
for(i in 1:ncol(ads)){
dat<-data.frame(m=m,ads[,i])
names(dat)<-c("m",names(ads)[i])
mn<-glm(m~.,family = binomial(),data=dat)
suppressMessages(ci<-exp(confint(mn)))
l<-round(ci[-1,1],2)
u<-round(ci[-1,2],2)
or<-round(exp(coef(mn))[-1],2)
or_ci<-paste0(or," (",l," to ",u,")")
pv<-round(tidy(mn)$p.value[-1],3)
x1<-ads[,i]
if (is.factor(x1)){
pred<-paste0(names(ads)[i],levels(x1)[-1])
}
else {
pred<-names(ads)[i]
}
dfcr<-rbind(dfcr,cbind(pred,or_ci,pv))
}
## Mutually adjusted ORs
dat<-data.frame(m=m,ads)
ma <- glm(m ~ .,family = binomial(), data = dat)
actable <- coef(summary(ma))
pa <- actable[,4]
pa<-ifelse(pa<0.001,"<0.001",round(pa,3))
pa <- ifelse(pa<=0.05|pa=="<0.001",paste0("*",pa),
ifelse(pa>0.05&pa<=0.1,paste0(".",pa),pa))
apv<-pa[1:length(coef(ma))]
aco<-round(exp(coef(ma)),dec)
suppressMessages(aci<-round(exp(confint(ma)),dec))
alo<-aci[,1]
aup<-aci[,2]
aor_ci<-paste0(aco," (",alo," to ",aup,")")
dat2<-dat[,-1]
# names(dat2)<-c(var,names(ads))
nq<-c()
for (i in 1:ncol(dat2)){
if (is.factor(dat2[,i])){
vec<-dat2[,i]
ns<-names(dat2)[i]
for (r in 1:length(levels(vec))){
vr<-levels(vec)[r]
2018-10-11 16:57:29 +02:00
dr<-vec[vec==vr&!is.na(vec)]
2018-10-11 16:31:46 +02:00
n<-as.numeric(length(dr))
nall<-as.numeric(nrow(dat[!is.na(dat2[,c(ns)]),]))
nl<-paste0(ns,levels(vec)[r])
pro<-round(n/nall*100,0)
rt<-paste0(n," (",pro,"%)")
2018-10-11 16:57:29 +02:00
nq<-rbind(nq,cbind(nl,rt))
2018-10-11 16:31:46 +02:00
}
}
if (!is.factor(dat2[,i])){
num<-dat2[,i]
2018-10-11 16:57:29 +02:00
nl<-names(dat2)[i]
rt<-as.numeric(nrow(dat[!is.na(dat2[,c(nl)]),]))
nq<-rbind(nq,cbind(nl,rt))
2018-10-11 16:31:46 +02:00
}
}
rnames<-c()
for (i in 1:ncol(dat2)){
if (is.factor(dat2[,i])){
rnames<-c(rnames,names(dat2)[i],paste0(names(dat2)[i],levels(dat2[,i])))
}
if (!is.factor(dat2[,i])){
rnames<-c(rnames,paste0(names(dat2)[i],".all"),names(dat2)[i])
}
}
res<-cbind(aor_ci,apv)
rest<-data.frame(names=row.names(res),res,stringsAsFactors = F)
2018-10-11 16:57:29 +02:00
numb<-data.frame(names=nq[,c("nl")],N=nq[,c("rt")],stringsAsFactors = F)
2018-10-11 16:31:46 +02:00
namt<-data.frame(names=rnames,stringsAsFactors = F)
coll<-left_join(left_join(namt,numb,by="names"),rest,by="names")
header<-data.frame(matrix("Adjusted",ncol = ncol(coll)),stringsAsFactors = F)
names(header)<-names(coll)
df<-data.frame(rbind(header,coll),stringsAsFactors = F)
names(dfcr)[1]<-c("names")
suppressWarnings(re<-left_join(df,dfcr,by="names"))
ref<-data.frame(re[,1],re[,2],re[,5],re[,3])
names(ref)<-c("Variable","N","Crude OR (95 % CI)","Mutually adjusted OR (95 % CI)")
return(ref)
}