mirror of
https://github.com/agdamsbo/daDoctoR.git
synced 2025-01-18 03:16:34 +01:00
new function for predictors
This commit is contained in:
parent
7f1822f867
commit
142274192b
@ -1,7 +1,7 @@
|
||||
Package: daDoctoR
|
||||
Type: Package
|
||||
Title: FUNCTIONS FOR HEALTH RESEARCH
|
||||
Version: 0.1.0.9005
|
||||
Version: 0.1.0.9006
|
||||
Author@R: c(person("Andreas", "Gammelgaard Damsbo", email = "agdamsbo@pm.me", role = c("cre", "aut")))
|
||||
Maintainer: Andreas Gammelgaard Damsbo <agdamsbo@pm.me>
|
||||
Description: I am a Danish medical doctor involved in neuropsychiatric research.
|
||||
|
@ -22,3 +22,4 @@ export(strobe_diff_byvar)
|
||||
export(strobe_diff_twodim)
|
||||
export(strobe_log)
|
||||
export(strobe_olr)
|
||||
export(strobe_pred)
|
||||
|
136
R/strobe_pred.R
Normal file
136
R/strobe_pred.R
Normal file
@ -0,0 +1,136 @@
|
||||
#' Logistic regression of predictors according to STROBE
|
||||
#'
|
||||
#' Printable table of logistic regression analysis according to STROBE.
|
||||
#' @param meas binary outcome meassure variable, column name in data.frame as a string. Can be numeric or factor. Result is calculated accordingly.
|
||||
#' @param adj variables to adjust for, as string.
|
||||
#' @param data dataframe of data.
|
||||
#' @param dec decimals for results, standard is set to 2. Mean and sd is dec-1.
|
||||
#' @keywords logistic
|
||||
#' @export
|
||||
#' @examples
|
||||
#' strobe_pred()
|
||||
|
||||
strobe_pred<-function(meas,adj,data,dec=2){
|
||||
## Ønskeliste:
|
||||
##
|
||||
## - Sum af alle, der indgår (Overall N)
|
||||
## - Ryd op i kode, der der er overflødig %-regning, alternativt, så fiks at NA'er ikke skal regnes med.
|
||||
##
|
||||
|
||||
require(dplyr)
|
||||
|
||||
d<-data
|
||||
m<-d[,c(meas)]
|
||||
|
||||
ads<-d[,c(adj)]
|
||||
|
||||
## Crude ORs
|
||||
|
||||
dfcr<-data.frame(matrix(NA,ncol = 3))
|
||||
names(dfcr)<-c("pred","or_ci","pv")
|
||||
|
||||
for(i in 1:ncol(ads)){
|
||||
dat<-data.frame(m=m,ads[,i])
|
||||
names(dat)<-c("m",names(ads)[i])
|
||||
mn<-glm(m~.,family = binomial(),data=dat)
|
||||
|
||||
suppressMessages(ci<-exp(confint(mn)))
|
||||
l<-round(ci[-1,1],2)
|
||||
u<-round(ci[-1,2],2)
|
||||
or<-round(exp(coef(mn))[-1],2)
|
||||
or_ci<-paste0(or," (",l," to ",u,")")
|
||||
pv<-round(tidy(mn)$p.value[-1],3)
|
||||
x1<-ads[,i]
|
||||
|
||||
if (is.factor(x1)){
|
||||
pred<-paste0(names(ads)[i],levels(x1)[-1])
|
||||
}
|
||||
|
||||
else {
|
||||
pred<-names(ads)[i]
|
||||
}
|
||||
|
||||
dfcr<-rbind(dfcr,cbind(pred,or_ci,pv))
|
||||
}
|
||||
|
||||
|
||||
## Mutually adjusted ORs
|
||||
|
||||
dat<-data.frame(m=m,ads)
|
||||
ma <- glm(m ~ .,family = binomial(), data = dat)
|
||||
|
||||
|
||||
actable <- coef(summary(ma))
|
||||
pa <- actable[,4]
|
||||
pa<-ifelse(pa<0.001,"<0.001",round(pa,3))
|
||||
pa <- ifelse(pa<=0.05|pa=="<0.001",paste0("*",pa),
|
||||
ifelse(pa>0.05&pa<=0.1,paste0(".",pa),pa))
|
||||
|
||||
apv<-pa[1:length(coef(ma))]
|
||||
|
||||
aco<-round(exp(coef(ma)),dec)
|
||||
suppressMessages(aci<-round(exp(confint(ma)),dec))
|
||||
alo<-aci[,1]
|
||||
aup<-aci[,2]
|
||||
aor_ci<-paste0(aco," (",alo," to ",aup,")")
|
||||
|
||||
dat2<-dat[,-1]
|
||||
# names(dat2)<-c(var,names(ads))
|
||||
nq<-c()
|
||||
|
||||
for (i in 1:ncol(dat2)){
|
||||
if (is.factor(dat2[,i])){
|
||||
vec<-dat2[,i]
|
||||
ns<-names(dat2)[i]
|
||||
for (r in 1:length(levels(vec))){
|
||||
vr<-levels(vec)[r]
|
||||
dr<-vec[vec==vr]
|
||||
n<-as.numeric(length(dr))
|
||||
nall<-as.numeric(nrow(dat[!is.na(dat2[,c(ns)]),]))
|
||||
nl<-paste0(ns,levels(vec)[r])
|
||||
pro<-round(n/nall*100,0)
|
||||
rt<-paste0(n," (",pro,"%)")
|
||||
nq<-rbind(nq,cbind(nl,n))
|
||||
}
|
||||
}
|
||||
if (!is.factor(dat2[,i])){
|
||||
num<-dat2[,i]
|
||||
ns<-names(dat2)[i]
|
||||
nall<-as.numeric(nrow(dat[!is.na(dat2[,c(ns)]),]))
|
||||
nq<-rbind(nq,cbind(ns,nall))
|
||||
}
|
||||
}
|
||||
|
||||
rnames<-c()
|
||||
|
||||
for (i in 1:ncol(dat2)){
|
||||
if (is.factor(dat2[,i])){
|
||||
rnames<-c(rnames,names(dat2)[i],paste0(names(dat2)[i],levels(dat2[,i])))
|
||||
}
|
||||
if (!is.factor(dat2[,i])){
|
||||
rnames<-c(rnames,paste0(names(dat2)[i],".all"),names(dat2)[i])
|
||||
}
|
||||
}
|
||||
res<-cbind(aor_ci,apv)
|
||||
rest<-data.frame(names=row.names(res),res,stringsAsFactors = F)
|
||||
|
||||
numb<-data.frame(names=nq[,c("nl")],N=nq[,c("n")],stringsAsFactors = F)
|
||||
namt<-data.frame(names=rnames,stringsAsFactors = F)
|
||||
|
||||
coll<-left_join(left_join(namt,numb,by="names"),rest,by="names")
|
||||
|
||||
header<-data.frame(matrix("Adjusted",ncol = ncol(coll)),stringsAsFactors = F)
|
||||
names(header)<-names(coll)
|
||||
|
||||
df<-data.frame(rbind(header,coll),stringsAsFactors = F)
|
||||
|
||||
names(dfcr)[1]<-c("names")
|
||||
|
||||
suppressWarnings(re<-left_join(df,dfcr,by="names"))
|
||||
|
||||
ref<-data.frame(re[,1],re[,2],re[,5],re[,3])
|
||||
|
||||
names(ref)<-c("Variable","N","Crude OR (95 % CI)","Mutually adjusted OR (95 % CI)")
|
||||
|
||||
return(ref)
|
||||
}
|
24
man/strobe_pred.Rd
Normal file
24
man/strobe_pred.Rd
Normal file
@ -0,0 +1,24 @@
|
||||
% Generated by roxygen2: do not edit by hand
|
||||
% Please edit documentation in R/strobe_pred.R
|
||||
\name{strobe_pred}
|
||||
\alias{strobe_pred}
|
||||
\title{Logistic regression of predictors according to STROBE}
|
||||
\usage{
|
||||
strobe_pred(meas, adj, data, dec = 2)
|
||||
}
|
||||
\arguments{
|
||||
\item{meas}{binary outcome meassure variable, column name in data.frame as a string. Can be numeric or factor. Result is calculated accordingly.}
|
||||
|
||||
\item{adj}{variables to adjust for, as string.}
|
||||
|
||||
\item{data}{dataframe of data.}
|
||||
|
||||
\item{dec}{decimals for results, standard is set to 2. Mean and sd is dec-1.}
|
||||
}
|
||||
\description{
|
||||
Printable table of logistic regression analysis according to STROBE.
|
||||
}
|
||||
\examples{
|
||||
strobe_pred()
|
||||
}
|
||||
\keyword{logistic}
|
Loading…
x
Reference in New Issue
Block a user