Transforms list of REDCap data.frames to a single wide data.frame
Source:R/redcap_wider.R
redcap_wider.Rd
Converts a list of REDCap data.frames from long to wide format. In essence it is a wrapper for the pivot_wider function applied on a REDCap output (from read_redcap_tables) or manually split by REDCap_split.
Usage
redcap_wider(
data,
event.glue = "{.value}____{redcap_event_name}",
inst.glue = "{.value}____{redcap_repeat_instance}"
)
Examples
# Longitudinal
list1 <- list(
data.frame(
record_id = c(1, 2, 1, 2),
redcap_event_name = c("baseline", "baseline", "followup", "followup"),
age = c(25, 26, 27, 28)
),
data.frame(
record_id = c(1, 2),
redcap_event_name = c("baseline", "baseline"),
gender = c("male", "female")
)
)
redcap_wider(list1)
#> Joining with `by = join_by(record_id)`
#> # A tibble: 2 × 4
#> record_id age____baseline age____followup gender
#> <dbl> <dbl> <dbl> <chr>
#> 1 1 25 27 male
#> 2 2 26 28 female
# Simpel with two instruments
list2 <- list(
data.frame(
record_id = c(1, 2),
age = c(25, 26)
),
data.frame(
record_id = c(1, 2),
gender = c("male", "female")
)
)
redcap_wider(list2)
#> Joining with `by = join_by(record_id)`
#> record_id age gender
#> 1 1 25 male
#> 2 2 26 female
# Simple with single instrument
list3 <- list(data.frame(
record_id = c(1, 2),
age = c(25, 26)
))
redcap_wider(list3)
#> record_id age
#> 1 1 25
#> 2 2 26
# Longitudinal with repeatable instruments
list4 <- list(
data.frame(
record_id = c(1, 2, 1, 2),
redcap_event_name = c("baseline", "baseline", "followup", "followup"),
age = c(25, 26, 27, 28)
),
data.frame(
record_id = c(1, 1, 1, 1, 2, 2, 2, 2),
redcap_event_name = c(
"baseline", "baseline", "followup", "followup",
"baseline", "baseline", "followup", "followup"
),
redcap_repeat_instrument = "walk",
redcap_repeat_instance = c(1, 2, 1, 2, 1, 2, 1, 2),
dist = c(40, 32, 25, 33, 28, 24, 23, 36)
),
data.frame(
record_id = c(1, 2),
redcap_event_name = c("baseline", "baseline"),
gender = c("male", "female")
)
)
redcap_wider(list4)
#> Joining with `by = join_by(record_id)`
#> Joining with `by = join_by(record_id)`
#> # A tibble: 2 × 8
#> record_id age____baseline age____followup dist____1____baseline
#> <dbl> <dbl> <dbl> <dbl>
#> 1 1 25 27 40
#> 2 2 26 28 28
#> # ℹ 4 more variables: dist____1____followup <dbl>, dist____2____baseline <dbl>,
#> # dist____2____followup <dbl>, gender <chr>