Skip to contents

This vignette covers the included functions and basic functionality.

A dataset and a meta data file are provided with the package for demonstration of the functions.

Splitting the dataset

redcapcast_data |> gt::gt()
record_id redcap_event_name redcap_repeat_instrument redcap_repeat_instance cpr inclusion inclusion_time dob age age_integer sex cohabitation hypertension diabetes region baseline_data_start_complete mrs_assessed mrs_date mrs_score mrs_complete con_mrs con_calc consensus_complete event_datetime event_age event_type new_event_complete
1 inclusion NA NA 1203401OB4 2023-03-13 12:38:49 1940-03-12 83.00239 83 female Yes No Yes East Incomplete Yes 2023-03-13 1 Incomplete NA NA NA NA NA NA NA
2 inclusion NA NA 0102342303 2023-03-01 10:38:57 1934-02-01 89.07780 89 male Yes No No South Incomplete Yes 2023-03-07 1 Incomplete NA NA NA NA NA NA NA
2 follow1 NA NA NA NA NA NA NA NA NA NA NA NA NA NA Yes 2023-03-09 3 Incomplete NA NA Incomplete NA NA NA NA
2 follow1 New Event (?) 1 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA 2024-01-18 12:49:42 NA TIA Incomplete
3 inclusion NA NA 2301569823 2022-03-08 12:01:07 1956-01-23 66.12319 66 male No Yes Yes North Incomplete NA NA NA Incomplete NA NA NA NA NA NA NA
3 follow1 NA NA NA NA NA NA NA NA NA NA NA NA NA NA Yes 2022-08-16 2 Incomplete NA NA Incomplete NA NA NA NA
3 follow2 NA NA NA NA NA NA NA NA NA NA NA NA NA NA Yes 2023-03-13 1 Incomplete NA NA Incomplete NA NA NA NA
3 follow1 New Event (?) 1 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA 2024-01-18 12:49:58 NA AIS Incomplete
3 follow1 New Event (?) 2 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA 2024-01-18 12:50:01 NA ICH Incomplete
3 follow2 New Event (?) 1 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA 2024-01-18 12:50:05 NA ICH Incomplete
3 follow2 New Event (?) 2 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA 2024-01-18 12:50:07 NA TIA Incomplete
3 follow2 New Event (?) 3 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA 2024-01-18 12:50:09 NA AIS Incomplete
4 inclusion NA NA 0204051342 2023-03-14 20:39:19 1905-04-02 117.94903 117 female NA NA NA NA Incomplete NA NA NA Incomplete NA NA NA NA NA NA NA
4 follow1 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA Incomplete NA NA Incomplete NA NA NA NA
4 follow2 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA Incomplete NA NA Incomplete NA NA NA NA
4 follow1 New Event (?) 1 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA 2001-04-11 08:39:05 96 TIA Complete
4 follow1 New Event (?) 2 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA 2010-04-11 08:39:25 105 TIA Complete
4 follow2 New Event (?) 1 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA 2024-01-18 12:50:19 118 AIS Complete
4 follow2 New Event (?) 2 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA 2024-01-18 12:50:22 118 ICH Incomplete
4 follow2 New Event (?) 3 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA 2024-01-18 12:50:24 118 Unknown Complete
5 inclusion NA NA 0201976043 2023-03-23 08:50:31 1897-01-02 126.21751 126 male No Yes Yes East Complete NA NA NA Incomplete NA NA NA NA NA NA NA
5 follow1 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA Incomplete NA NA Incomplete NA NA NA NA
5 follow1 New Event (?) 1 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA 2024-04-11 09:00:33 127 AIS Complete
5 follow1 New Event (?) 2 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA 2024-04-11 09:00:41 127 ICH Complete
6 inclusion NA NA 1202320122 2024-01-25 08:49:28 1932-02-12 91.95261 91 female No Yes No East Complete NA NA NA Incomplete NA NA NA NA NA NA NA
redcapcast_meta |> gt::gt()
field_name form_name section_header field_type field_label select_choices_or_calculations field_note text_validation_type_or_show_slider_number text_validation_min text_validation_max identifier branching_logic required_field custom_alignment question_number matrix_group_name matrix_ranking field_annotation
record_id baseline_data_start NA text ID NA NA NA NA NA NA NA NA NA NA NA NA NA
cpr baseline_data_start NA text CPR (Danish civil registration number) NA ddmmyyxxxx NA NA NA y NA y NA NA NA NA NA
inclusion baseline_data_start NA text Inclusion date NA NA date_ymd NA NA NA NA NA NA NA NA NA NA
inclusion_time baseline_data_start NA text Inclusion time NA NA time_hh_mm_ss NA NA NA NA NA NA NA NA NA NA
dob baseline_data_start NA text Date of birth (From CPR) NA NA date_ymd NA NA NA NA NA NA NA NA NA @CALCTEXT(if([cpr]!="", concat(if(mid([cpr], 7, 1)>=0 and mid([cpr], 7, 1)<=3,19, if(mid([cpr], 5, 2)>=0 and mid([cpr], 5, 2)<=36 and mid([cpr], 7, 1)>=4 and mid([cpr], 7, 1)<=4,20, if(mid([cpr], 5, 2)>=37 and mid([cpr], 5, 2)<=99 and mid([cpr], 7, 1)>=4 and mid([cpr], 7, 1)<=4,19, if(mid([cpr], 5, 2)>=0 and mid([cpr], 5, 2)<=57 and mid([cpr], 7, 1)>=5 and mid([cpr], 7, 1)<=5,20, if(mid([cpr], 5, 2)>=58 and mid([cpr], 5, 2)<=99 and mid([cpr], 7, 1)>=5 and mid([cpr], 7, 1)<=5,18, if(mid([cpr], 5, 2)>=0 and mid([cpr], 5, 2)<=57 and mid([cpr], 7, 1)>=6 and mid([cpr], 7, 1)<=6,20, if(mid([cpr], 5, 2)>=58 and mid([cpr], 5, 2)<=99 and mid([cpr], 7, 1)>=6 and mid([cpr], 7, 1)<=6,18, if(mid([cpr], 5, 2)>=0 and mid([cpr], 5, 2)<=57 and mid([cpr], 7, 1)>=7 and mid([cpr], 7, 1)<=7,20, if(mid([cpr], 5, 2)>=58 and mid([cpr], 5, 2)<=99 and mid([cpr], 7, 1)>=7 and mid([cpr], 7, 1)<=7,18, if(mid([cpr], 5, 2)>=0 and mid([cpr], 5, 2)<=57 and mid([cpr], 7, 1)>=8 and mid([cpr], 7, 1)<=8,20, if(mid([cpr], 5, 2)>=58 and mid([cpr], 5, 2)<=99 and mid([cpr], 7, 1)>=8 and mid([cpr], 7, 1)<=8,18, if(mid([cpr], 5, 2)>=0 and mid([cpr], 5, 2)<=36 and mid([cpr], 7, 1)>=9 and mid([cpr], 7, 1)<=9,20, if(mid([cpr], 5, 2)>=37 and mid([cpr], 5, 2)<=99 and mid([cpr], 7, 1)>=9 and mid([cpr], 7, 1)<=9,19,17))))))))))))), mid([cpr], 5, 2), "-",mid([cpr],3, 2), "-", left([cpr], 2) ), ""))
age baseline_data_start NA calc Age Note: Apparently, the build in datediff() function does not handle counting whole years. This results in wrongly counting age higher around the date of birth. if([cpr]!="" and [inclusion]!="", datediff([dob], [inclusion], 'y'), "") NA NA NA NA NA NA NA NA NA NA NA NA
age_integer baseline_data_start NA calc Age integer Note: as opposed to the build in datediff() this handles counting years as integers very well. Calculate decimal years in statistical programming software. In R you can use with(ds, stRoke::age_calc(dob, inclusion)). if([cpr]!="", left([inclusion], 4)-left([dob], 4) - if(mid([dob], 6, 2) < mid([inclusion], 6, 2) or (mid([dob], 6, 2) = mid([inclusion], 6, 2) and mid([dob], 9, 2) <= mid([inclusion], 9, 2)), 0, 1),"") NA NA NA NA NA NA NA NA NA NA NA NA
sex baseline_data_start NA text Legal sex NA NA NA NA NA NA NA NA NA NA NA NA @CALCTEXT(if([cpr]!="",if((right([cpr],1)=1 or right([cpr],1)=3 or right([cpr],1)=5 or right([cpr],1)=7 or right([cpr],1)=9),"male","female"),""))
cohabitation baseline_data_start History and social radio Cohabitation 1, Yes | 2, No NA NA NA NA NA NA NA NA NA NA NA NA
hypertension baseline_data_start NA radio Hypertension 1, Yes | 2, No NA NA NA NA NA NA NA NA NA NA NA NA
diabetes baseline_data_start NA radio Diabetes 1, Yes | 2, No NA NA NA NA NA NA NA NA NA NA NA NA
region baseline_data_start Area dropdown Region 1, North | 2, East | 3, South | 4, West NA autocomplete NA NA NA NA NA NA NA NA NA NA
mrs_assessed mrs NA radio Assesed 1, Yes | 2, No NA NA NA NA NA NA NA NA NA NA NA NA
mrs_date mrs NA text Assessment date NA NA date_dmy NA NA NA NA NA NA NA NA NA NA
mrs_score mrs NA radio mRS score 0, 0 | 1, 1 | 2, 2 | 3, 3 | 4, 4 | 5, 5 NA NA NA NA NA NA NA NA NA NA NA NA
con_event_note consensus NA descriptive [follow1_arm_1][event_type][1] : [follow1_arm_1][event_type][2] NA NA NA NA NA NA NA NA NA NA NA NA NA
con_mrs consensus NA text Same event type NA NA NA NA NA NA NA NA NA NA NA NA @IF('[follow1_arm_1][event_type][1]'='[follow1_arm_1][event_type][2]',@DEFAULT='pass',@DEFAULT="fail")
con_calc consensus NA text calc NA NA NA NA NA NA NA NA NA NA NA NA @CALCTEXT(if([follow1_arm_1][event_type][1]=[follow1_arm_1][event_type][2],[follow1_arm_1][event_type][1],"fail"))
event_datetime new_event NA text Time of event NA NA datetime_seconds_ymd NA NA NA NA NA NA NA NA NA NA
event_age new_event NA calc Age at event if([event_datetime]!="", left([event_datetime], 4)-left([inclusion_arm_1][dob], 4) - if(mid([inclusion_arm_1][dob], 6, 2) < mid([event_datetime], 6, 2) or (mid([inclusion_arm_1][dob], 6, 2) = mid([event_datetime], 6, 2) and mid([inclusion_arm_1][dob], 9, 2) <= mid([event_datetime], 9, 2)), 0, 1),"") NA NA NA NA NA NA NA NA NA NA NA NA
event_type new_event NA radio Neurovascular event 1, TIA | 2, AIS | 3, ICH | 4, SAH | 99, Unknown NA NA NA NA NA NA NA NA NA NA NA NA
list <-
  REDCap_split(
    records = redcapcast_data,
    metadata = redcapcast_meta,
    forms = "all"
  ) |> 
  sanitize_split()
str(list)
#> List of 4
#>  $ baseline_data_start: tibble [6 × 14] (S3: tbl_df/tbl/data.frame)
#>   ..$ record_id                   : num [1:6] 1 2 3 4 5 6
#>   ..$ redcap_event_name           : chr [1:6] "inclusion" "inclusion" "inclusion" "inclusion" ...
#>   ..$ cpr                         : chr [1:6] "1203401OB4" "0102342303" "2301569823" "0204051342" ...
#>   ..$ inclusion                   : Date[1:6], format: "2023-03-13" "2023-03-01" ...
#>   ..$ inclusion_time              : 'hms' num [1:6] 12:38:49 10:38:57 12:01:07 20:39:19 ...
#>   .. ..- attr(*, "units")= chr "secs"
#>   ..$ dob                         : Date[1:6], format: "1940-03-12" "1934-02-01" ...
#>   ..$ age                         : num [1:6] 83 89.1 66.1 117.9 126.2 ...
#>   ..$ age_integer                 : num [1:6] 83 89 66 117 126 91
#>   ..$ sex                         : chr [1:6] "female" "male" "male" "female" ...
#>   ..$ cohabitation                : chr [1:6] "Yes" "Yes" "No" NA ...
#>   ..$ hypertension                : chr [1:6] "No" "No" "Yes" NA ...
#>   ..$ diabetes                    : chr [1:6] "Yes" "No" "Yes" NA ...
#>   ..$ region                      : chr [1:6] "East" "South" "North" NA ...
#>   ..$ baseline_data_start_complete: chr [1:6] "Incomplete" "Incomplete" "Incomplete" "Incomplete" ...
#>   ..- attr(*, "problems")=<externalptr> 
#>  $ mrs                : tibble [5 × 6] (S3: tbl_df/tbl/data.frame)
#>   ..$ record_id        : num [1:5] 1 2 2 3 3
#>   ..$ redcap_event_name: chr [1:5] "inclusion" "inclusion" "follow1" "follow1" ...
#>   ..$ mrs_assessed     : chr [1:5] "Yes" "Yes" "Yes" "Yes" ...
#>   ..$ mrs_date         : Date[1:5], format: "2023-03-13" "2023-03-07" ...
#>   ..$ mrs_score        : num [1:5] 1 1 3 2 1
#>   ..$ mrs_complete     : chr [1:5] "Incomplete" "Incomplete" "Incomplete" "Incomplete" ...
#>   ..- attr(*, "problems")=<externalptr> 
#>  $ consensus          : tibble [0 × 5] (S3: tbl_df/tbl/data.frame)
#>   ..$ record_id         : num(0) 
#>   ..$ redcap_event_name : chr(0) 
#>   ..$ con_mrs           : logi(0) 
#>   ..$ con_calc          : logi(0) 
#>   ..$ consensus_complete: chr(0) 
#>   ..- attr(*, "problems")=<externalptr> 
#>  $ new_event          : tibble [13 × 8] (S3: tbl_df/tbl/data.frame)
#>   ..$ record_id               : num [1:13] 2 3 3 3 3 3 4 4 4 4 ...
#>   ..$ redcap_event_name       : chr [1:13] "follow1" "follow1" "follow1" "follow2" ...
#>   ..$ redcap_repeat_instrument: chr [1:13] "new_event" "new_event" "new_event" "new_event" ...
#>   ..$ redcap_repeat_instance  : num [1:13] 1 1 2 1 2 3 1 2 1 2 ...
#>   ..$ event_datetime          : POSIXct[1:13], format: "2024-01-18 12:49:42" "2024-01-18 12:49:58" ...
#>   ..$ event_age               : num [1:13] NA NA NA NA NA NA 96 105 118 118 ...
#>   ..$ event_type              : chr [1:13] "TIA" "AIS" "ICH" "ICH" ...
#>   ..$ new_event_complete      : chr [1:13] "Incomplete" "Incomplete" "Incomplete" "Incomplete" ...
#>   ..- attr(*, "problems")=<externalptr>

Reading data from REDCap

This function wraps all the above demonstrated function to get the dataset, the metadata, apply the REDCap_splitfunction and then a bit of cleaning. It just cuts outs all the steps for an easier approach.

The function works very similar to the REDCapR::redcap_read() in allowing to specify fields, events and forms for export instead of exporting the whole database and filtering afterwards. I believe this is a better and safer, focused approach.

# read_redcap_tables(uri = "YOUR URI", token = "YOUR TOKEN")

Pivotting to wider format

redcap_wider(list) |> str()
#> Joining with `by = join_by(record_id)`
#> Joining with `by = join_by(record_id)`
#> Joining with `by = join_by(record_id)`
#> 'data.frame':    6 obs. of  52 variables:
#>  $ record_id                   : num  1 2 3 4 5 6
#>  $ cpr                         : chr  "1203401OB4" "0102342303" "2301569823" "0204051342" ...
#>  $ inclusion                   : Date, format: "2023-03-13" "2023-03-01" ...
#>  $ inclusion_time              : 'hms' num  12:38:49 10:38:57 12:01:07 20:39:19 ...
#>   ..- attr(*, "units")= chr "secs"
#>  $ dob                         : Date, format: "1940-03-12" "1934-02-01" ...
#>  $ age                         : num  83 89.1 66.1 117.9 126.2 ...
#>  $ age_integer                 : num  83 89 66 117 126 91
#>  $ sex                         : chr  "female" "male" "male" "female" ...
#>  $ cohabitation                : chr  "Yes" "Yes" "No" NA ...
#>  $ hypertension                : chr  "No" "No" "Yes" NA ...
#>  $ diabetes                    : chr  "Yes" "No" "Yes" NA ...
#>  $ region                      : chr  "East" "South" "North" NA ...
#>  $ baseline_data_start_complete: chr  "Incomplete" "Incomplete" "Incomplete" "Incomplete" ...
#>  $ mrs_assessed_inclusion      : chr  "Yes" "Yes" NA NA ...
#>  $ mrs_assessed_follow1        : chr  NA "Yes" "Yes" NA ...
#>  $ mrs_assessed_follow2        : chr  NA NA "Yes" NA ...
#>  $ mrs_date_inclusion          : Date, format: "2023-03-13" "2023-03-07" ...
#>  $ mrs_date_follow1            : Date, format: NA "2023-03-09" ...
#>  $ mrs_date_follow2            : Date, format: NA NA ...
#>  $ mrs_score_inclusion         : num  1 1 NA NA NA NA
#>  $ mrs_score_follow1           : num  NA 3 2 NA NA NA
#>  $ mrs_score_follow2           : num  NA NA 1 NA NA NA
#>  $ mrs_complete_inclusion      : chr  "Incomplete" "Incomplete" NA NA ...
#>  $ mrs_complete_follow1        : chr  NA "Incomplete" "Incomplete" NA ...
#>  $ mrs_complete_follow2        : chr  NA NA "Incomplete" NA ...
#>  $ con_mrs                     : logi  NA NA NA NA NA NA
#>  $ con_calc                    : logi  NA NA NA NA NA NA
#>  $ consensus_complete          : chr  NA NA NA NA ...
#>  $ event_datetime_1_follow1    : POSIXct, format: NA "2024-01-18 12:49:42" ...
#>  $ event_datetime_1_follow2    : POSIXct, format: NA NA ...
#>  $ event_age_1_follow1         : num  NA NA NA 96 127 NA
#>  $ event_age_1_follow2         : num  NA NA NA 118 NA NA
#>  $ event_type_1_follow1        : chr  NA "TIA" "AIS" "TIA" ...
#>  $ event_type_1_follow2        : chr  NA NA "ICH" "AIS" ...
#>  $ new_event_complete_1_follow1: chr  NA "Incomplete" "Incomplete" "Complete" ...
#>  $ new_event_complete_1_follow2: chr  NA NA "Incomplete" "Complete" ...
#>  $ event_datetime_2_follow1    : POSIXct, format: NA NA ...
#>  $ event_datetime_2_follow2    : POSIXct, format: NA NA ...
#>  $ event_datetime_3_follow1    : POSIXct, format: NA NA ...
#>  $ event_datetime_3_follow2    : POSIXct, format: NA NA ...
#>  $ event_age_2_follow1         : num  NA NA NA 105 127 NA
#>  $ event_age_2_follow2         : num  NA NA NA 118 NA NA
#>  $ event_age_3_follow1         : num  NA NA NA NA NA NA
#>  $ event_age_3_follow2         : num  NA NA NA 118 NA NA
#>  $ event_type_2_follow1        : chr  NA NA "ICH" "TIA" ...
#>  $ event_type_2_follow2        : chr  NA NA "TIA" "ICH" ...
#>  $ event_type_3_follow1        : chr  NA NA NA NA ...
#>  $ event_type_3_follow2        : chr  NA NA "AIS" "Unknown" ...
#>  $ new_event_complete_2_follow1: chr  NA NA "Incomplete" "Complete" ...
#>  $ new_event_complete_2_follow2: chr  NA NA "Incomplete" "Incomplete" ...
#>  $ new_event_complete_3_follow1: chr  NA NA NA NA ...
#>  $ new_event_complete_3_follow2: chr  NA NA "Incomplete" "Complete" ...