REDCapCAST/vignettes/Introduction.Rmd

69 lines
1.4 KiB
Plaintext
Raw Normal View History

2023-04-13 10:57:04 +02:00
---
title: "Introduction"
output: rmarkdown::html_vignette
vignette: >
%\VignetteIndexEntry{Introduction}
%\VignetteEngine{knitr::rmarkdown}
%\VignetteEncoding{UTF-8}
---
```{r, include = FALSE}
knitr::opts_chunk$set(
collapse = TRUE,
comment = "#>"
)
```
```{r setup}
library(REDCapCAST)
```
This vignette covers the included functions and basic functionality.
A dataset and a meta data file are provided with the package for demonstration of the functions.
2023-04-13 10:57:04 +02:00
## Splitting the dataset
2023-04-13 10:57:04 +02:00
```{r}
redcapcast_data |> gt::gt()
2023-04-13 10:57:04 +02:00
```
```{r}
redcapcast_meta |> gt::gt()
2023-04-13 10:57:04 +02:00
```
```{r}
list <-
REDCapCAST::REDCap_split(records = redcapcast_data,
metadata = redcapcast_meta,
2023-04-13 10:57:04 +02:00
forms = "repeating")
str(list)
```
```{r}
list <-
REDCapCAST::REDCap_split(records = redcapcast_data,
metadata = redcapcast_meta,
2023-04-13 10:57:04 +02:00
forms = "all")
str(list)
```
## Reading data from REDCap
This function wraps all the above demonstrated function to get the dataset, the metadata, apply the `REDCap_split`function and then a bit of cleaning.
2023-04-14 09:46:55 +02:00
The function works very similar to the `REDCapR::redcap_read()`.
```{r eval=FALSE}
# read_redcap_tables(uri = "YOUR URI", token = "YOUR TOKEN")
# ds <- read_redcap_tables(uri = key_get("DB_URI"), token = key_get("cast_api"))
2023-04-13 10:57:04 +02:00
```
## Pivotting to wider format
```{r}
# redcap_wider(ds)
2023-04-13 10:57:04 +02:00
```