--- title: "Introduction" output: rmarkdown::html_vignette vignette: > %\VignetteIndexEntry{Introduction} %\VignetteEngine{knitr::rmarkdown} %\VignetteEncoding{UTF-8} --- ```{r, include = FALSE} knitr::opts_chunk$set( collapse = TRUE, comment = "#>" ) ``` ```{r setup} library(REDCapCAST) ``` This vignette covers the included functions and basic functionality. A dataset and a meta data file are provided with the package for demonstration of the functions. ## Splitting the dataset ```{r} redcapcast_data |> gt::gt() ``` ```{r} redcapcast_meta |> gt::gt() ``` ```{r} list <- REDCapCAST::REDCap_split(records = redcapcast_data, metadata = redcapcast_meta, forms = "repeating") str(list) ``` ```{r} list <- REDCapCAST::REDCap_split(records = redcapcast_data, metadata = redcapcast_meta, forms = "all") str(list) ``` ## Reading data from REDCap This function wraps all the above demonstrated function to get the dataset, the metadata, apply the `REDCap_split`function and then a bit of cleaning. The function works very similar to the `REDCapR::redcap_read()`. ```{r eval=FALSE} # read_redcap_tables(uri = "YOUR URI", token = "YOUR TOKEN") # ds <- read_redcap_tables(uri = key_get("DB_URI"), token = key_get("cast_api")) ``` ## Pivotting to wider format ```{r} # redcap_wider(ds) ```