--- title: "Patient flowchart and chi^2 tests" author: "Andreas Gammelgaard Damsbo" date: "Knitted: `r format(Sys.time(), '%d %B, %Y')`" output: pdf_document --- ```{r setup, include=FALSE} knitr::opts_chunk$set(echo = TRUE, message = FALSE) ``` # Import ```{r} dta_all<-read.csv("/Volumes/Data/depression/dep_dataset.csv") ``` # Defining patients to include for analysis Only including cases with complete pase_0 and MDI at 1 & 6 months ```{r} dta<-dta_all[!is.na(dta_all$pase_0),] # &!is.na(dta$mdi_1)&!is.na(dta$mdi_6) ``` # Backup ```{r} dta_b<-dta ``` # Sammentællinger ```{r} summary(cbind(is.na(dta_all[,c("pase_0","mdi_1","mdi_1_enr","mdi_6_newobs","mdi_6_newobs_enr")]), both_missing=is.na(dta$mdi_1)&is.na(dta$mdi_6_newobs), either_missing=is.na(dta$mdi_1)|is.na(dta$mdi_6_newobs))) ``` ```{r} suppressWarnings(summary(cbind(all_particip=dta_all$mors_180=="yes", all_pase0=dta$mors_180=="yes", all_mdi_1=!is.na(dta$mdi_1)&dta$mors_180=="yes"))) # Antal der dør table(dta$pase_0_bin,factor(dta$mors_180)) # Antal der dør, stratificeret efter PASE gruppe ``` ```{r} # summary(factor(dta$mors_v1)) # summary(factor(dta$mors_v16)) # OBS medregnet er 2 dødsfald, der ikke har MDI 1. ``` # Flow ## 1 month Shows counts of all patients withs missing MDI 1 scores. ```{r message=FALSE} source("/Volumes/Data/depression/function_flow.R") # Home made flow function show(flow_prog(df=dta[dta$excluded_1%in%c("ex_1","mi_1","ca_1"),], sngl=c("mors_v1","drop1"), sngl_keep=c("no","yes"), mltp=c("open_treat","wants_out","side_effect","side_effect2"))) # v1<-dta$rnumb[dta$excluded_1%in%c("ex_1","mi_1")] ``` Same overview, but vectorised ```{r} summary(factor(dta$excluded_1)) # dt_1 are organic data, en_1 are enriched, ex_1 are excluded, mi_1 were missing, # ca_1 were missing at 1 month, but held data at 6 months, and thus carried along. ``` ## 6 months Shows counts of all patients withs missing MDI 6 scores. ```{r} show(flow_prog(df=dta[is.na(dta$mdi_6_newobs_enr)&dta$excluded_6%in%c("ex_6"),], # sngl=c("mors_v16","drop16"), sngl_keep=c("no","yes"), mltp=c("open_treat","wants_out","side_effect","side_effect2"))) # v2<-dta$rnumb[is.na(dta$mdi_6_newobs_enr)&dta$excluded_1%in%c("ca_1","dt_1")] ``` ```{r} summary(factor(dta$excluded_6)) # dt_6 are organic data, en_6 are enriched, ex_6 are excluded, mi_6 were excluded at 1 month. # At 6 month 118 are excluded due to any cause # Due to later inclusion of ca_1 patients, the sum of patients excluded at 6 months is 71+62-16=117 ``` This flow counts all patients dying or dropping out early after 1 month. Some have a recorded MDI at dropout. This is just to give a perspective on data. ```{r} show(flow_prog(df=dta, # sngl=c("mors_v16","drop16"), sngl_keep=c("no","yes"), mltp=c("open_treat","wants_out","side_effect","side_effect2"))) # v2<-dta$rnumb[is.na(dta$mdi_6_newobs_enr)&dta$excluded_1%in%c("ca_1","dt_1")] ``` ```{r} summary(as.numeric(dta$inc_time[dta$drop16=="yes"])) ``` # Chi^2 tests ```{r} source("/Volumes/Data/depression/function_chi_test_sum.R") ex_lst<-list() ex_var<-c("mdi_1_enr","rtreat","pase_0_bin") for (i in 2:3){ ex_lst <- append(ex_lst,chi_test_sum(a=is.na(dta[,ex_var[1]]), b=dta[,ex_var[i]], aname=ex_var[1], bname=ex_var[i])) } ``` ```{r} # ex_var<-c("open_treat","rtreat","pase_0_bin") # for (i in 2:3){ # ex_lst <- append(ex_lst, # chi_test_sum(a=dta[,ex_var[1]], # b=dta[,ex_var[i]], # aname=ex_var[1], # bname=ex_var[i])) # } ## Taget ud grundet for lave tal ``` ```{r} ex_var<-c("mdi_1_enr","rtreat","pase_0_bin") for (i in 2:3){ ex_lst <- append(ex_lst, chi_test_sum(a=is.na(dta$mdi_6_newobs_enr)&!is.na(dta$mdi_1_enr), b=dta[,ex_var[i]], aname="Excluded at 6 months", bname=ex_var[i])) } for (i in 2:3){ ex_lst <- append(ex_lst, chi_test_sum(a=is.na(dta$mdi_6_newobs_enr), b=dta[,ex_var[i]], aname="Total unavailable at 6 months", bname=ex_var[i])) } ``` ```{r} # ex_var<-c("open_treat","rtreat","pase_0_bin") # for (i in 2:3){ # ex_lst <- append(ex_lst, # chi_test_sum(a=dta[,ex_var[1]], # b=dta[,ex_var[i]], # aname=ex_var[1], # bname=ex_var[i])) # } show(ex_lst) ```