commit all: what a mess!
This commit is contained in:
parent
f7d1f3ce89
commit
9821318c51
1
.gitignore
vendored
1
.gitignore
vendored
@ -52,3 +52,4 @@ po/*~
|
||||
*.zip
|
||||
*.pdf
|
||||
*.csv
|
||||
/*.csv
|
64
00 master.R
64
00 master.R
@ -10,9 +10,9 @@
|
||||
#
|
||||
# Focus has been on universal functions, and the amount of flags has accumulated...
|
||||
#
|
||||
# Only retransformation is performed on independent variables (these are not marked in the exported tables).
|
||||
# Coefs and CIs are transformed according to this:
|
||||
# https://stats.stackexchange.com/questions/93089/reporting-regression-statistics-after-logarithmic-transformation to allow for interpretation.
|
||||
# No transformation is performed. Instead a sensitivity analysis is performed using splines.
|
||||
#
|
||||
# Robust CIs are calculated for all analyses.
|
||||
|
||||
## =============================================================================
|
||||
## Table 1
|
||||
@ -24,6 +24,7 @@ source("table_1.R")
|
||||
|
||||
tbl_1
|
||||
|
||||
|
||||
## =============================================================================
|
||||
## Primary regression analysis
|
||||
## =============================================================================
|
||||
@ -40,15 +41,7 @@ biv_mul <- TRUE # Sets flag for both bivariate and multivariate or only multivar
|
||||
|
||||
strat_var <- NULL # Variable to stratify by. Only one variable(!)
|
||||
|
||||
trans_vars <- TRUE # Transform variables? T/F
|
||||
|
||||
sqrt_vars<-"pase_0" # Variables to sqrt-transfom
|
||||
log1p_vars<-"nihss_0" # Variables to log1p-transform, not outcome
|
||||
log_vars <- NULL # Variables to log-transform
|
||||
|
||||
log1p_vars_all<-c(log1p_vars,outs) # All variables to log1p-transform, incl outcome
|
||||
|
||||
trans_back <- TRUE # Back transform variables? T/F
|
||||
robust_ci <- TRUE
|
||||
|
||||
print_tbl <- TRUE # Print tables? T/F
|
||||
|
||||
@ -85,15 +78,7 @@ biv_mul <- TRUE # Sets flag for both bivariate and multivariate or only multivar
|
||||
|
||||
strat_var <- NULL # Variable to stratify by. Only one variable(!)
|
||||
|
||||
trans_vars <- TRUE # Transform variables? T/F
|
||||
|
||||
sqrt_vars<-"pase_0" # Variables to sqrt-transfom
|
||||
log1p_vars<-"nihss_0" # Variables to log1p-transform, not outcome
|
||||
log_vars <- NULL # Variables to log-transform
|
||||
|
||||
log1p_vars_all<-c(log1p_vars,outs) # All variables to log1p-transform, incl outcome
|
||||
|
||||
trans_back <- TRUE # Back transform variables? T/F
|
||||
robust_ci <- TRUE
|
||||
|
||||
print_tbl <- TRUE # Print tables? T/F
|
||||
|
||||
@ -120,6 +105,21 @@ source("biv_mul_man.R")
|
||||
|
||||
source("data_format.R")
|
||||
|
||||
vars<-c("active_treat", # vars() is defined in data_format.R, here "
|
||||
"pase_0",
|
||||
"female",
|
||||
"age",
|
||||
"cohab",
|
||||
"ever_smoker",
|
||||
"diabetes",
|
||||
"hypertension",
|
||||
"afli",
|
||||
"ami",
|
||||
"tci",
|
||||
"pad",
|
||||
"nihss_0",
|
||||
"any_reperf")
|
||||
|
||||
outs<-c("mdi_1_enr","mdi_6_newobs_enr")
|
||||
|
||||
lbl_x <- "_inter" # Extra label in file name
|
||||
@ -128,17 +128,9 @@ inter_reg <- c("active_treat","pase_0") # Interaction variables to include (only
|
||||
|
||||
biv_mul <- TRUE # Sets flag for both bivariate and multivariate or only multivariate analysis
|
||||
|
||||
trans_vars <- TRUE # Transform variables? T/F
|
||||
|
||||
strat_var <- NULL # Variable to stratify by. Only one variable(!)
|
||||
|
||||
sqrt_vars<-"pase_0" # Variables to sqrt-transfom
|
||||
log1p_vars<-"nihss_0" # Variables to log1p-transform, not outcome
|
||||
log_vars <- NULL # Variables to log-transform
|
||||
|
||||
log1p_vars_all<-c(log1p_vars,outs) # All variables to log1p-transform, incl outcome
|
||||
|
||||
trans_back <- TRUE # Back transform variables? T/F
|
||||
robust_ci <- TRUE
|
||||
|
||||
print_tbl <- TRUE # Print tables? T/F
|
||||
|
||||
@ -173,19 +165,11 @@ lbl_x <- "_nihss-pase" # Extra label in file name
|
||||
|
||||
inter_reg <- NULL # Interaction variables to include (only multivariate)
|
||||
|
||||
biv_mul <- FALSE # Sets flag for both bivariate and multivariate or only multivariate analysis
|
||||
|
||||
trans_vars <- TRUE # Transform variables? T/F
|
||||
biv_mul <- TRUE # Sets flag for both bivariate and multivariate or only multivariate analysis
|
||||
|
||||
strat_var <- NULL # Variable to stratify by. Only one variable(!)
|
||||
|
||||
sqrt_vars<-"pase_0" # Variables to sqrt-transfom
|
||||
log1p_vars<-NULL # Variables to log1p-transform, not outcome
|
||||
log_vars <- NULL # Variables to log-transform
|
||||
|
||||
log1p_vars_all<-c(outs) # All variables to log1p-transform, incl outcome
|
||||
|
||||
trans_back <- TRUE # Back transform variables? T/F
|
||||
robust_ci <- TRUE
|
||||
|
||||
print_tbl <- TRUE # Print tables? T/F
|
||||
|
||||
|
118
Archive/biv_mul_man.R
Normal file
118
Archive/biv_mul_man.R
Normal file
@ -0,0 +1,118 @@
|
||||
##
|
||||
## NOTES
|
||||
##
|
||||
## Leaving gtsummary as this is slow and a little inflexible.
|
||||
##
|
||||
|
||||
## =============================================================================
|
||||
## Requirements
|
||||
## =============================================================================
|
||||
|
||||
source("function_trans_cols.R")
|
||||
|
||||
if (trans_vars==TRUE){
|
||||
# If trans_vars flag is TRUE, transform specified variables
|
||||
dta<-trans_cols(dta_backup,sqrts=sqrt_vars,log1ps = log1p_vars_all)
|
||||
} else {dta<-dta_backup}
|
||||
|
||||
library(dplyr)
|
||||
library(gtsummary)
|
||||
|
||||
source("function_back_trans.R")
|
||||
|
||||
## =============================================================================
|
||||
## Loop
|
||||
## =============================================================================
|
||||
|
||||
dec <- 3
|
||||
bm_list<-list()
|
||||
|
||||
if (biv_mul){
|
||||
do_biv=TRUE
|
||||
do_mul=TRUE
|
||||
} else {
|
||||
do_biv=FALSE
|
||||
do_mul=TRUE
|
||||
}
|
||||
|
||||
for (i in 1:length(outs)){
|
||||
|
||||
if (!is.null(strat_var)){
|
||||
ls<-split(dta,dta[strat_var])
|
||||
strat_list<-list()
|
||||
|
||||
for (j in 1:length(ls)){
|
||||
X<-ls[[j]][,vars] # Choosing the dataset for the given strata and stated variables
|
||||
y <- ls[[j]][,outs[i]] # Choosing the outcome data for the given strata and the current outcome variable
|
||||
|
||||
# Flagging factors and continous variables
|
||||
#
|
||||
sel_f<-X|>
|
||||
sapply(is.factor)
|
||||
f.names <- colnames(X)[sel_f]
|
||||
|
||||
source("function_reg_table.R")
|
||||
rt<-reg_table(X,y,m.biv=do_biv,m.mul=do_mul,trans.var = trans_vars,sqrt.vars=sqrt_vars,inter.add=inter_reg)
|
||||
|
||||
rt<-rt|>mutate(across(matches('co|lo|hi|pv'),as.numeric))
|
||||
|
||||
rt[,grepl('co|lo|hi|pv',names(rt))] <- sapply( round( rt[,grepl('co|lo|hi|pv',names(rt))], 3 ),formatC, format='f', digits=3 )
|
||||
|
||||
# Saving the data.frame in indexed list
|
||||
strat_list[[j]] <- rt
|
||||
|
||||
# Using just the first four characters for shorter colnames in "do.call" later.
|
||||
names(strat_list)[j] <- paste0(substr(strat_var,1,4),
|
||||
".",
|
||||
levels(dta[,strat_var])[j])
|
||||
|
||||
}
|
||||
|
||||
bm_list[[i]] <- do.call(cbind, strat_list) # cbinds all elements in list, independent of number of strata
|
||||
names(bm_list)[i] <- outs[i]
|
||||
|
||||
} else {
|
||||
X<-dta[,vars]
|
||||
y <- dta[,outs[i]]
|
||||
|
||||
# Flagging factors and continous variables
|
||||
#
|
||||
sel_f<-X|>
|
||||
sapply(is.factor)
|
||||
f.names <- colnames(X)[sel_f]
|
||||
|
||||
source("function_reg_table.R")
|
||||
rt<-reg_table(X,y,m.biv=do_biv,m.mul=do_mul,trans.var = trans_vars,sqrt.vars=sqrt_vars,inter.add=inter_reg)
|
||||
|
||||
rt<-rt|>mutate(across(matches('co|lo|hi|pv'),as.numeric))
|
||||
|
||||
rt[,grepl('co|lo|hi|pv',names(rt))] <- sapply( round( rt[,grepl('co|lo|hi|pv',names(rt))], 3 ),formatC, format='f', digits=3 )
|
||||
|
||||
bm_list[[i]] <- rt
|
||||
names(bm_list)[i] <- outs[i]
|
||||
|
||||
}
|
||||
|
||||
}
|
||||
## =============================================================================
|
||||
## Print
|
||||
## =============================================================================
|
||||
|
||||
# File name depending onstratification, transformation and back transformation
|
||||
if (print_tbl==TRUE){
|
||||
fnm<-paste0("bm_16_tbl",lbl_x)
|
||||
if (!is.null(strat_var)){fnm<-paste0(fnm,"_strat")}
|
||||
if (trans_vars==TRUE){fnm<-paste0(fnm,"_trans")}
|
||||
# if (trans_back==TRUE){fnm<-paste0(fnm,"_back")}
|
||||
|
||||
export<-data.frame()
|
||||
for (i in 1:length(bm_list)){
|
||||
export<-rbind(export,paste(names(bm_list)[i]),bm_list[[i]])
|
||||
}
|
||||
|
||||
write.csv(export,paste0(fnm,".csv"))
|
||||
|
||||
}
|
||||
|
||||
|
||||
|
22
Data skim.Rmd
Normal file
22
Data skim.Rmd
Normal file
@ -0,0 +1,22 @@
|
||||
---
|
||||
title: "Data overview"
|
||||
author: "AGDamsbo"
|
||||
date: "2022-10-03"
|
||||
output:
|
||||
html_document:
|
||||
df_print: paged
|
||||
---
|
||||
|
||||
```{r setup, include=FALSE}
|
||||
knitr::opts_chunk$set(echo = TRUE)
|
||||
```
|
||||
|
||||
## Data skim
|
||||
|
||||
|
||||
```{r message=FALSE}
|
||||
source("data_format.R")
|
||||
|
||||
dta |> skimr::skim(c(vars, "mdi_1_enr","mdi_6_newobs_enr", "active_treat"))
|
||||
```
|
||||
|
Binary file not shown.
108
NOK.Rmd
Normal file
108
NOK.Rmd
Normal file
@ -0,0 +1,108 @@
|
||||
---
|
||||
title: "NOK"
|
||||
author: "AGDamsbo"
|
||||
date: "`r Sys.Date()`"
|
||||
output: html_document
|
||||
---
|
||||
|
||||
```{r setup, include=FALSE}
|
||||
knitr::opts_chunk$set(echo = TRUE)
|
||||
```
|
||||
|
||||
## PASE by next of kin
|
||||
|
||||
Hermed analyse og oversigt over TALOS patienter med PASE der ikke er udfyldt af dem selv.
|
||||
|
||||
## Oversigt efter PASE gruppe
|
||||
|
||||
Variablen "own_write" angiver om det af PASE-skemaet fremgår hvorvidt pt selv har udfyldt skemaet. Er TRUE/FALSE og kun TRUE vises.
|
||||
Variablen "own_answer" er min bedste vurdering udfra den registrerede kommentar, om hvorvidt det er pts eget svar (alternativt vurdering ved pårørende). Er TRUE/FALSE og kun TRUE vises.
|
||||
Variablen "afasi" angiver grad af afasi ved den akutte NIHSS.
|
||||
|
||||
```{r echo=FALSE, message=FALSE, warning=FALSE}
|
||||
source("api_dataset.R")
|
||||
source("data_format.R")
|
||||
|
||||
df <- dta|> left_join(df_own,by=c("rnumb"="record_id"))
|
||||
|
||||
tbl_vars<-unique(c("own_write","own_answer","afasi","active_treat",vars,"inc_time","mdi_1_enr","mdi_6_newobs_enr","mdi_1","mdi_6_newobs"))
|
||||
```
|
||||
|
||||
```{r}
|
||||
df |>
|
||||
tbl_summary(by = "pase_0_q",
|
||||
missing = "ifany",
|
||||
include = all_of(tbl_vars),
|
||||
missing_text="(Missing)"#,
|
||||
# label = lab_sel(labels_all,tbl1_vars)
|
||||
)|>
|
||||
add_n()|>
|
||||
add_overall() |>
|
||||
gtsummary::italicize_levels() |>
|
||||
as_gt() |>
|
||||
# modify with gt functions
|
||||
gt::tab_header("Baseline Characteristics") |>
|
||||
gt::tab_options(
|
||||
table.font.size = "small",
|
||||
data_row.padding = gt::px(1))
|
||||
```
|
||||
|
||||
## Oversigt efter "own_answer" til sammenligning
|
||||
|
||||
```{r}
|
||||
df |> #mutate(own_answer = own_answer+1) |>
|
||||
tbl_summary(by = "own_answer",
|
||||
missing = "ifany",
|
||||
include = all_of(tbl_vars),
|
||||
missing_text="(Missing)"#,
|
||||
# label = lab_sel(labels_all,tbl1_vars)
|
||||
)|>
|
||||
add_n()|>
|
||||
add_overall() |>
|
||||
add_p() |>
|
||||
gtsummary::bold_p() |>
|
||||
gtsummary::italicize_levels() |>
|
||||
as_gt() |>
|
||||
# modify with gt functions
|
||||
gt::tab_header("PASE by next of kin") |>
|
||||
gt::tab_options(
|
||||
table.font.size = "small",
|
||||
data_row.padding = gt::px(1))
|
||||
```
|
||||
|
||||
## Sensititvitetsanalyse
|
||||
|
||||
Begrænset til kun at inkludere ptt med eget svar
|
||||
|
||||
```{r}
|
||||
source("data_format.R")
|
||||
|
||||
dta <- inner_join(dta,df_own |> filter(own_answer) |> select(record_id),by=c("rnumb"="record_id"))
|
||||
|
||||
outs<-c("mdi_1_enr","mdi_6_newobs_enr")
|
||||
|
||||
lbl_x <- NULL # Extra label in file name
|
||||
|
||||
inter_reg <- NULL # Interaction variables to include (only multivariate)
|
||||
|
||||
biv_mul <- TRUE # Sets flag for both bivariate and multivariate or only multivariate analysis
|
||||
|
||||
print_tbl <- FALSE # Print tables? T/F
|
||||
|
||||
robust_ci = TRUE
|
||||
|
||||
# source("biv_mul.R")
|
||||
|
||||
source("biv_mul_man.R")
|
||||
|
||||
export<-data.frame()
|
||||
for (i in 1:length(bm_list)){
|
||||
export<-rbind(export,paste(names(bm_list)[i]),bm_list[[i]])
|
||||
}
|
||||
|
||||
export |> gt::gt()|>
|
||||
gt::tab_options(
|
||||
table.font.size = "small",
|
||||
data_row.padding = gt::px(1))
|
||||
```
|
||||
|
38
api_dataset.R
Normal file
38
api_dataset.R
Normal file
@ -0,0 +1,38 @@
|
||||
# keyring::key_set("talos_api")
|
||||
|
||||
|
||||
df <-
|
||||
REDCapR::redcap_read_oneshot(
|
||||
"https://redcap.au.dk/api/",
|
||||
keyring::key_get("talos_api"),forms = c("basis","reg","nihss_0","pase_0")
|
||||
)$data |>
|
||||
dplyr::select(c(
|
||||
"record_id",
|
||||
"talos_nihss13_0",
|
||||
"talos_nihss16_0",
|
||||
"talos_pase12_0",
|
||||
"talos_pase12x_0"
|
||||
))
|
||||
|
||||
# For inspection of a few missing.
|
||||
# ds <- df[df$talos_pase12_0=="Not available",c("record_id","talos_pase10_0","talos_pase12_0")]
|
||||
|
||||
|
||||
library(tidyverse)
|
||||
|
||||
# Grov kategorisering
|
||||
df |>
|
||||
mutate(own = grepl("(interview)|(hjælp)|(adspurgt)", talos_pase12x_0)) |>
|
||||
arrange(desc(own)) |> readODS::write_ods("pase.ods")
|
||||
|
||||
# Manual sorting
|
||||
|
||||
df_own <- readODS::read_ods("pase_edit.ods")
|
||||
|
||||
df_own <- df_own |>
|
||||
mutate(
|
||||
own_write = talos_pase12_0=="1. Ja",
|
||||
own_answer = ifelse(own_write, TRUE, own),
|
||||
afasi = factor(talos_nihss13_0,labels=c("0:ingen","1:mild","2:svær","3:stum",NA))
|
||||
) |>
|
||||
select(c("record_id", "own_write", "own_answer", "afasi"))
|
@ -8,26 +8,21 @@
|
||||
## Requirements
|
||||
## =============================================================================
|
||||
|
||||
source("function_trans_cols.R")
|
||||
source("function_reg_table_robust.R")
|
||||
|
||||
if (trans_vars==TRUE){
|
||||
# If trans_vars flag is TRUE, transform specified variables
|
||||
dta<-trans_cols(dta_backup,sqrts=sqrt_vars,log1ps = log1p_vars_all)
|
||||
} else {dta<-dta_backup}
|
||||
# dta<-dta_backup
|
||||
|
||||
library(dplyr)
|
||||
library(gtsummary)
|
||||
library(sandwich)
|
||||
library(lmtest)
|
||||
|
||||
source("function_back_trans.R")
|
||||
|
||||
vars_all<-c("active_treat",vars)
|
||||
|
||||
## =============================================================================
|
||||
## Loop
|
||||
## =============================================================================
|
||||
|
||||
dec <- 3
|
||||
bm_list<-list()
|
||||
|
||||
if (biv_mul){
|
||||
do_biv=TRUE
|
||||
@ -37,60 +32,28 @@ if (biv_mul){
|
||||
do_mul=TRUE
|
||||
}
|
||||
|
||||
for (i in 1:length(outs)){
|
||||
|
||||
if (!is.null(strat_var)){
|
||||
ls<-split(dta,dta[strat_var])
|
||||
strat_list<-list()
|
||||
|
||||
for (j in 1:length(ls)){
|
||||
X<-ls[[i]][,vars]
|
||||
y <- ls[[i]][,outs[i]]
|
||||
|
||||
# Flagging factors and continous variables
|
||||
#
|
||||
sel_f<-X|>
|
||||
sapply(is.factor)
|
||||
f.names <- colnames(X)[sel_f]
|
||||
|
||||
source("function_reg_table.R")
|
||||
rt<-reg_table(X,y,m.biv=do_biv,m.mul=do_mul,trans.var = trans_vars,sqrt.vars=sqrt_vars,inter.add=inter_reg)
|
||||
|
||||
rt<-rt|>mutate(across(matches('co|lo|hi|pv'),as.numeric))
|
||||
|
||||
rt[,grepl('co|lo|hi|pv',names(rt))] <- sapply( round( rt[,grepl('co|lo|hi|pv',names(rt))], 3 ),formatC, format='f', digits=3 )
|
||||
|
||||
strat_list[[j]] <- rt
|
||||
names(strat_list)[j] <- levels(dta[,strat_var])[j]
|
||||
|
||||
}
|
||||
|
||||
bm_list[[i]] <- cbind(names(strat_list)[1],strat_list[[1]],names(strat_list)[2],strat_list[[2]])
|
||||
names(bm_list)[i] <- outs[i]
|
||||
|
||||
} else {
|
||||
X<-dta[,vars_all]
|
||||
bm_list <- lapply(seq_along(outs), function(i){
|
||||
X<-dta[,vars]
|
||||
y <- dta[,outs[i]]
|
||||
|
||||
# Flagging factors and continous variables
|
||||
#
|
||||
sel_f<-X|>
|
||||
sapply(is.factor)
|
||||
f.names <- colnames(X)[sel_f]
|
||||
# sel_f <- X |>
|
||||
# sapply(is.factor)
|
||||
# f.names <- colnames(X)[sel_f]
|
||||
|
||||
source("function_reg_table.R")
|
||||
rt<-reg_table(X,y,m.biv=do_biv,m.mul=do_mul,trans.var = trans_vars,sqrt.vars=sqrt_vars,inter.add=inter_reg)
|
||||
rt<-reg_table(X,y,m.biv=do_biv,m.mul=do_mul,inter.add=inter_reg,robust=robust_ci)
|
||||
|
||||
rt<-rt|>mutate(across(matches('co|lo|hi|pv'),as.numeric))
|
||||
|
||||
rt[,grepl('co|lo|hi|pv',names(rt))] <- sapply( round( rt[,grepl('co|lo|hi|pv',names(rt))], 3 ),formatC, format='f', digits=3 )
|
||||
|
||||
bm_list[[i]] <- rt
|
||||
names(bm_list)[i] <- outs[i]
|
||||
rt
|
||||
})
|
||||
|
||||
}
|
||||
names(bm_list) <- outs
|
||||
|
||||
}
|
||||
## =============================================================================
|
||||
## Print
|
||||
## =============================================================================
|
||||
@ -98,9 +61,7 @@ for (i in 1:length(outs)){
|
||||
# File name depending onstratification, transformation and back transformation
|
||||
if (print_tbl==TRUE){
|
||||
fnm<-paste0("bm_16_tbl",lbl_x)
|
||||
if (!is.null(strat_var)){fnm<-paste0(fnm,"_strat")}
|
||||
if (trans_vars==TRUE){fnm<-paste0(fnm,"_trans")}
|
||||
# if (trans_back==TRUE){fnm<-paste0(fnm,"_back")}
|
||||
if (robust_ci==TRUE){fnm<-paste0(fnm,"_robust")}
|
||||
|
||||
export<-data.frame()
|
||||
for (i in 1:length(bm_list)){
|
||||
|
@ -1,33 +0,0 @@
|
||||
"","name","pred","co","lo","hi","pv","co.p","lo.p","hi.p"
|
||||
"1","mdi_1_enr","mdi_1_enr","mdi_1_enr","mdi_1_enr","mdi_1_enr","mdi_1_enr","mdi_1_enr","mdi_1_enr","mdi_1_enr"
|
||||
"2","active_treat","active_treat.yes","0.234","-0.232","0.699","0.325","0.263","-0.207","1.013"
|
||||
"3","pase_0","pase_0","-0.000","-0.002","0.000","0.266","-0.000","-0.002","0.000"
|
||||
"4","female","female.yes","0.180","0.019","0.341","0.028","0.197","0.020","0.406"
|
||||
"5","age","age","-0.006","-0.013","0.000","0.059","-0.006","-0.013","0.000"
|
||||
"6","cohab","cohab.yes","0.039","-0.122","0.199","0.637","0.039","-0.115","0.220"
|
||||
"7","ever_smoker","ever_smoker.yes","-0.131","-0.288","0.027","0.103","-0.123","-0.250","0.027"
|
||||
"8","diabetes","diabetes.yes","0.218","-0.011","0.448","0.062","0.244","-0.011","0.565"
|
||||
"9","hypertension","hypertension.yes","0.062","-0.091","0.214","0.428","0.064","-0.087","0.239"
|
||||
"10","afli","afli.yes","-0.152","-0.353","0.050","0.140","-0.141","-0.298","0.051"
|
||||
"11","ami","ami.yes","0.175","-0.105","0.456","0.220","0.192","-0.100","0.577"
|
||||
"12","tci","tci.yes","0.075","-0.366","0.515","0.739","0.078","-0.306","0.674"
|
||||
"13","pad","pad.yes","0.150","-0.237","0.537","0.447","0.162","-0.211","0.712"
|
||||
"14","nihss_0","nihss_0","0.116","0.009","0.223","0.034","0.116","0.009","0.223"
|
||||
"15","any_reperf","any_reperf.yes","-0.011","-0.172","0.151","0.896","-0.011","-0.158","0.163"
|
||||
"16","active_treat*pase_0+","active_treat*pase_0+","-0.011","-0.049","0.027","0.570","-0.011","-0.049","0.027"
|
||||
"17","mdi_6_newobs_enr","mdi_6_newobs_enr","mdi_6_newobs_enr","mdi_6_newobs_enr","mdi_6_newobs_enr","mdi_6_newobs_enr","mdi_6_newobs_enr","mdi_6_newobs_enr","mdi_6_newobs_enr"
|
||||
"18","active_treat","active_treat.yes","-0.056","-0.624","0.511","0.845","-0.055","-0.464","0.667"
|
||||
"19","pase_0","pase_0","-0.001","-0.004","0.000","0.060","-0.001","-0.004","0.000"
|
||||
"20","female","female.yes","0.264","0.076","0.452","0.006","0.302","0.079","0.571"
|
||||
"21","age","age","-0.007","-0.015","0.000","0.063","-0.007","-0.015","0.000"
|
||||
"22","cohab","cohab.yes","-0.008","-0.198","0.182","0.933","-0.008","-0.179","0.199"
|
||||
"23","ever_smoker","ever_smoker.yes","-0.001","-0.183","0.182","0.996","-0.001","-0.168","0.200"
|
||||
"24","diabetes","diabetes.yes","-0.017","-0.299","0.265","0.906","-0.017","-0.259","0.304"
|
||||
"25","hypertension","hypertension.yes","0.100","-0.079","0.278","0.273","0.105","-0.076","0.321"
|
||||
"26","afli","afli.yes","-0.063","-0.301","0.175","0.604","-0.061","-0.260","0.191"
|
||||
"27","ami","ami.yes","0.303","-0.032","0.638","0.076","0.354","-0.032","0.894"
|
||||
"28","tci","tci.yes","-0.696","-1.211","-0.180","0.008","-0.501","-0.702","-0.164"
|
||||
"29","pad","pad.yes","0.304","-0.155","0.763","0.194","0.355","-0.144","1.144"
|
||||
"30","nihss_0","nihss_0","0.133","0.006","0.261","0.040","0.133","0.006","0.261"
|
||||
"31","any_reperf","any_reperf.yes","-0.035","-0.223","0.153","0.718","-0.034","-0.200","0.166"
|
||||
"32","active_treat*pase_0+","active_treat*pase_0+","-0.001","-0.047","0.045","0.965","-0.001","-0.047","0.045"
|
|
@ -1,14 +0,0 @@
|
||||
"","name","pred","co","lo","hi","pv","co.p","lo.p","hi.p"
|
||||
"1","nihss_0","nihss_0","nihss_0","nihss_0","nihss_0","nihss_0","nihss_0","nihss_0","nihss_0"
|
||||
"2","active_treat","active_treat.yes","0.002","-0.119","0.123","0.975","0.002","-0.112","0.130"
|
||||
"3","pase_0","pase_0","-0.000","-0.001","0.000","0.067","-0.000","-0.001","0.000"
|
||||
"4","female","female.yes","0.086","-0.050","0.222","0.213","0.090","-0.049","0.249"
|
||||
"5","age","age","0.004","-0.001","0.010","0.127","0.004","-0.001","0.010"
|
||||
"6","cohab","cohab.yes","0.085","-0.049","0.220","0.215","0.089","-0.048","0.246"
|
||||
"7","ever_smoker","ever_smoker.yes","0.008","-0.124","0.140","0.908","0.008","-0.117","0.150"
|
||||
"8","diabetes","diabetes.yes","-0.000","-0.192","0.192","0.999","-0.000","-0.174","0.211"
|
||||
"9","hypertension","hypertension.yes","-0.149","-0.275","-0.022","0.021","-0.138","-0.240","-0.022"
|
||||
"10","afli","afli.yes","0.229","0.063","0.395","0.007","0.258","0.065","0.485"
|
||||
"11","ami","ami.yes","0.034","-0.195","0.263","0.771","0.035","-0.177","0.301"
|
||||
"12","tci","tci.yes","-0.170","-0.535","0.195","0.361","-0.156","-0.414","0.216"
|
||||
"13","pad","pad.yes","-0.273","-0.608","0.062","0.110","-0.239","-0.455","0.063"
|
|
@ -1,29 +0,0 @@
|
||||
"","names(strat_list)[1]","name","pred","biv_co","biv_lo","biv_hi","biv_pv","biv_co.p","biv_lo.p","biv_hi.p","mul_co","mul_lo","mul_hi","mul_pv","mul_co.p","mul_lo.p","mul_hi.p","names(strat_list)[2]","name","pred","biv_co","biv_lo","biv_hi","biv_pv","biv_co.p","biv_lo.p","biv_hi.p","mul_co","mul_lo","mul_hi","mul_pv","mul_co.p","mul_lo.p","mul_hi.p"
|
||||
"1","mdi_1_enr","mdi_1_enr","mdi_1_enr","mdi_1_enr","mdi_1_enr","mdi_1_enr","mdi_1_enr","mdi_1_enr","mdi_1_enr","mdi_1_enr","mdi_1_enr","mdi_1_enr","mdi_1_enr","mdi_1_enr","mdi_1_enr","mdi_1_enr","mdi_1_enr","mdi_1_enr","mdi_1_enr","mdi_1_enr","mdi_1_enr","mdi_1_enr","mdi_1_enr","mdi_1_enr","mdi_1_enr","mdi_1_enr","mdi_1_enr","mdi_1_enr","mdi_1_enr","mdi_1_enr","mdi_1_enr","mdi_1_enr","mdi_1_enr","mdi_1_enr"
|
||||
"2","no","pase_0","pase_0","-0.000","-0.002","0.000","0.226","-0.000","-0.002","0.000","-0.000","-0.002","0.000","0.364","-0.000","-0.002","0.000","yes","pase_0","pase_0","-0.000","-0.002","0.000","0.226","-0.000","-0.002","0.000","-0.000","-0.002","0.000","0.364","-0.000","-0.002","0.000"
|
||||
"3","no","female","female.yes","-0.032","-0.245","0.180","0.765","-0.032","-0.217","0.198","0.025","-0.204","0.255","0.830","0.025","-0.185","0.290","yes","female","female.yes","-0.032","-0.245","0.180","0.765","-0.032","-0.217","0.198","0.025","-0.204","0.255","0.830","0.025","-0.185","0.290"
|
||||
"4","no","age","age","0.001","-0.007","0.009","0.847","0.001","-0.007","0.009","-0.001","-0.010","0.008","0.768","-0.001","-0.010","0.008","yes","age","age","0.001","-0.007","0.009","0.847","0.001","-0.007","0.009","-0.001","-0.010","0.008","0.768","-0.001","-0.010","0.008"
|
||||
"5","no","cohab","cohab.yes","-0.028","-0.235","0.180","0.792","-0.027","-0.210","0.197","0.039","-0.188","0.266","0.736","0.040","-0.171","0.304","yes","cohab","cohab.yes","-0.028","-0.235","0.180","0.792","-0.027","-0.210","0.197","0.039","-0.188","0.266","0.736","0.040","-0.171","0.304"
|
||||
"6","no","ever_smoker","ever_smoker.yes","-0.115","-0.333","0.103","0.301","-0.109","-0.283","0.109","-0.114","-0.341","0.113","0.323","-0.108","-0.289","0.119","yes","ever_smoker","ever_smoker.yes","-0.115","-0.333","0.103","0.301","-0.109","-0.283","0.109","-0.114","-0.341","0.113","0.323","-0.108","-0.289","0.119"
|
||||
"7","no","diabetes","diabetes.yes","0.125","-0.162","0.412","0.392","0.133","-0.149","0.509","0.176","-0.130","0.482","0.259","0.192","-0.122","0.619","yes","diabetes","diabetes.yes","0.125","-0.162","0.412","0.392","0.133","-0.149","0.509","0.176","-0.130","0.482","0.259","0.192","-0.122","0.619"
|
||||
"8","no","hypertension","hypertension.yes","0.064","-0.134","0.262","0.525","0.066","-0.126","0.300","-0.054","-0.272","0.164","0.625","-0.053","-0.238","0.178","yes","hypertension","hypertension.yes","0.064","-0.134","0.262","0.525","0.066","-0.126","0.300","-0.054","-0.272","0.164","0.625","-0.053","-0.238","0.178"
|
||||
"9","no","afli","afli.yes","-0.061","-0.337","0.216","0.665","-0.059","-0.286","0.241","-0.126","-0.418","0.167","0.397","-0.118","-0.342","0.181","yes","afli","afli.yes","-0.061","-0.337","0.216","0.665","-0.059","-0.286","0.241","-0.126","-0.418","0.167","0.397","-0.118","-0.342","0.181"
|
||||
"10","no","ami","ami.yes","0.230","-0.116","0.575","0.192","0.258","-0.110","0.778","0.348","-0.044","0.741","0.082","0.416","-0.043","1.097","yes","ami","ami.yes","0.230","-0.116","0.575","0.192","0.258","-0.110","0.778","0.348","-0.044","0.741","0.082","0.416","-0.043","1.097"
|
||||
"11","no","tci","tci.yes","-0.371","-1.065","0.324","0.295","-0.310","-0.655","0.383","-0.356","-1.044","0.332","0.309","-0.300","-0.648","0.393","yes","tci","tci.yes","-0.371","-1.065","0.324","0.295","-0.310","-0.655","0.383","-0.356","-1.044","0.332","0.309","-0.300","-0.648","0.393"
|
||||
"12","no","pad","pad.yes","0.321","-0.111","0.752","0.145","0.378","-0.105","1.122","0.287","-0.195","0.770","0.241","0.333","-0.177","1.159","yes","pad","pad.yes","0.321","-0.111","0.752","0.145","0.378","-0.105","1.122","0.287","-0.195","0.770","0.241","0.333","-0.177","1.159"
|
||||
"13","no","nihss_0","nihss_0","0.153","0.010","0.297","0.036","0.153","0.010","0.297","0.238","0.083","0.393","0.003","0.238","0.083","0.393","yes","nihss_0","nihss_0","0.153","0.010","0.297","0.036","0.153","0.010","0.297","0.238","0.083","0.393","0.003","0.238","0.083","0.393"
|
||||
"14","no","any_reperf","any_reperf.yes","-0.087","-0.289","0.114","0.396","-0.083","-0.251","0.121","-0.194","-0.417","0.029","0.089","-0.176","-0.341","0.030","yes","any_reperf","any_reperf.yes","-0.087","-0.289","0.114","0.396","-0.083","-0.251","0.121","-0.194","-0.417","0.029","0.089","-0.176","-0.341","0.030"
|
||||
"15","mdi_6_newobs_enr","mdi_6_newobs_enr","mdi_6_newobs_enr","mdi_6_newobs_enr","mdi_6_newobs_enr","mdi_6_newobs_enr","mdi_6_newobs_enr","mdi_6_newobs_enr","mdi_6_newobs_enr","mdi_6_newobs_enr","mdi_6_newobs_enr","mdi_6_newobs_enr","mdi_6_newobs_enr","mdi_6_newobs_enr","mdi_6_newobs_enr","mdi_6_newobs_enr","mdi_6_newobs_enr","mdi_6_newobs_enr","mdi_6_newobs_enr","mdi_6_newobs_enr","mdi_6_newobs_enr","mdi_6_newobs_enr","mdi_6_newobs_enr","mdi_6_newobs_enr","mdi_6_newobs_enr","mdi_6_newobs_enr","mdi_6_newobs_enr","mdi_6_newobs_enr","mdi_6_newobs_enr","mdi_6_newobs_enr","mdi_6_newobs_enr","mdi_6_newobs_enr","mdi_6_newobs_enr","mdi_6_newobs_enr"
|
||||
"16","no","pase_0","pase_0","-0.002","-0.006","-0.000","0.007","-0.002","-0.006","-0.000","-0.002","-0.006","0.000","0.059","-0.002","-0.006","0.000","yes","pase_0","pase_0","-0.002","-0.006","-0.000","0.007","-0.002","-0.006","-0.000","-0.002","-0.006","0.000","0.059","-0.002","-0.006","0.000"
|
||||
"17","no","female","female.yes","0.305","0.061","0.549","0.015","0.356","0.063","0.731","0.274","0.002","0.546","0.048","0.315","0.002","0.726","yes","female","female.yes","0.305","0.061","0.549","0.015","0.356","0.063","0.731","0.274","0.002","0.546","0.048","0.315","0.002","0.726"
|
||||
"18","no","age","age","0.000","-0.009","0.009","0.977","0.000","-0.009","0.009","-0.008","-0.019","0.003","0.134","-0.008","-0.019","0.003","yes","age","age","0.000","-0.009","0.009","0.977","0.000","-0.009","0.009","-0.008","-0.019","0.003","0.134","-0.008","-0.019","0.003"
|
||||
"19","no","cohab","cohab.yes","-0.067","-0.325","0.190","0.607","-0.065","-0.277","0.209","-0.102","-0.381","0.178","0.475","-0.097","-0.317","0.195","yes","cohab","cohab.yes","-0.067","-0.325","0.190","0.607","-0.065","-0.277","0.209","-0.102","-0.381","0.178","0.475","-0.097","-0.317","0.195"
|
||||
"20","no","ever_smoker","ever_smoker.yes","0.103","-0.145","0.351","0.413","0.109","-0.135","0.420","0.098","-0.163","0.359","0.460","0.103","-0.150","0.432","yes","ever_smoker","ever_smoker.yes","0.103","-0.145","0.351","0.413","0.109","-0.135","0.420","0.098","-0.163","0.359","0.460","0.103","-0.150","0.432"
|
||||
"21","no","diabetes","diabetes.yes","0.080","-0.339","0.498","0.709","0.083","-0.287","0.645","0.079","-0.343","0.500","0.713","0.082","-0.290","0.649","yes","diabetes","diabetes.yes","0.080","-0.339","0.498","0.709","0.083","-0.287","0.645","0.079","-0.343","0.500","0.713","0.082","-0.290","0.649"
|
||||
"22","no","hypertension","hypertension.yes","0.285","0.047","0.523","0.019","0.330","0.049","0.686","0.158","-0.103","0.419","0.235","0.171","-0.098","0.520","yes","hypertension","hypertension.yes","0.285","0.047","0.523","0.019","0.330","0.049","0.686","0.158","-0.103","0.419","0.235","0.171","-0.098","0.520"
|
||||
"23","no","afli","afli.yes","-0.079","-0.404","0.245","0.631","-0.076","-0.332","0.278","-0.076","-0.411","0.259","0.655","-0.073","-0.337","0.296","yes","afli","afli.yes","-0.079","-0.404","0.245","0.631","-0.076","-0.332","0.278","-0.076","-0.411","0.259","0.655","-0.073","-0.337","0.296"
|
||||
"24","no","ami","ami.yes","0.203","-0.254","0.661","0.382","0.225","-0.225","0.936","0.178","-0.326","0.682","0.488","0.195","-0.278","0.977","yes","ami","ami.yes","0.203","-0.254","0.661","0.382","0.225","-0.225","0.936","0.178","-0.326","0.682","0.488","0.195","-0.278","0.977"
|
||||
"25","no","tci","tci.yes","-0.718","-1.431","-0.005","0.049","-0.512","-0.761","-0.005","-0.806","-1.521","-0.092","0.027","-0.553","-0.781","-0.088","yes","tci","tci.yes","-0.718","-1.431","-0.005","0.049","-0.512","-0.761","-0.005","-0.806","-1.521","-0.092","0.027","-0.553","-0.781","-0.088"
|
||||
"26","no","pad","pad.yes","0.339","-0.439","1.118","0.391","0.404","-0.355","2.058","0.293","-0.575","1.161","0.507","0.340","-0.437","2.194","yes","pad","pad.yes","0.339","-0.439","1.118","0.391","0.404","-0.355","2.058","0.293","-0.575","1.161","0.507","0.340","-0.437","2.194"
|
||||
"27","no","nihss_0","nihss_0","0.028","-0.136","0.193","0.734","0.028","-0.136","0.193","-0.056","-0.239","0.126","0.544","-0.056","-0.239","0.126","yes","nihss_0","nihss_0","0.028","-0.136","0.193","0.734","0.028","-0.136","0.193","-0.056","-0.239","0.126","0.544","-0.056","-0.239","0.126"
|
||||
"28","no","any_reperf","any_reperf.yes","0.037","-0.211","0.285","0.768","0.038","-0.190","0.330","0.183","-0.097","0.462","0.199","0.201","-0.092","0.588","yes","any_reperf","any_reperf.yes","0.037","-0.211","0.285","0.768","0.038","-0.190","0.330","0.183","-0.097","0.462","0.199","0.201","-0.092","0.588"
|
|
@ -1,31 +1,33 @@
|
||||
"","name","pred","biv_co","biv_lo","biv_hi","biv_pv","biv_co.p","biv_lo.p","biv_hi.p","mul_co","mul_lo","mul_hi","mul_pv","mul_co.p","mul_lo.p","mul_hi.p"
|
||||
"1","mdi_1_enr","mdi_1_enr","mdi_1_enr","mdi_1_enr","mdi_1_enr","mdi_1_enr","mdi_1_enr","mdi_1_enr","mdi_1_enr","mdi_1_enr","mdi_1_enr","mdi_1_enr","mdi_1_enr","mdi_1_enr","mdi_1_enr","mdi_1_enr"
|
||||
"2","active_treat","active_treat.yes","0.053","-0.090","0.196","0.464","0.055","-0.086","0.217","0.105","-0.039","0.250","0.151","0.111","-0.038","0.284"
|
||||
"3","pase_0","pase_0","-0.001","-0.002","-0.000","0.006","-0.001","-0.002","-0.000","-0.000","-0.002","0.000","0.059","-0.000","-0.002","0.000"
|
||||
"4","female","female.yes","0.145","-0.005","0.295","0.058","0.156","-0.005","0.343","0.183","0.023","0.344","0.025","0.201","0.023","0.410"
|
||||
"5","age","age","-0.001","-0.007","0.004","0.688","-0.001","-0.007","0.004","-0.006","-0.012","0.000","0.060","-0.006","-0.012","0.000"
|
||||
"6","cohab","cohab.yes","0.019","-0.132","0.169","0.807","0.019","-0.123","0.184","0.040","-0.120","0.201","0.620","0.041","-0.113","0.222"
|
||||
"7","ever_smoker","ever_smoker.yes","-0.088","-0.240","0.064","0.256","-0.084","-0.214","0.066","-0.134","-0.291","0.023","0.095","-0.125","-0.252","0.023"
|
||||
"8","diabetes","diabetes.yes","0.159","-0.065","0.383","0.163","0.172","-0.063","0.466","0.217","-0.013","0.446","0.064","0.242","-0.012","0.563"
|
||||
"9","hypertension","hypertension.yes","0.138","-0.004","0.281","0.058","0.148","-0.004","0.324","0.061","-0.091","0.214","0.430","0.063","-0.087","0.238"
|
||||
"10","afli","afli.yes","-0.146","-0.342","0.050","0.143","-0.136","-0.290","0.051","-0.149","-0.351","0.052","0.146","-0.139","-0.296","0.053"
|
||||
"11","ami","ami.yes","0.147","-0.112","0.405","0.266","0.158","-0.106","0.499","0.177","-0.103","0.457","0.216","0.194","-0.098","0.580"
|
||||
"12","tci","tci.yes","0.138","-0.316","0.591","0.550","0.148","-0.271","0.807","0.078","-0.362","0.518","0.729","0.081","-0.304","0.678"
|
||||
"13","pad","pad.yes","0.139","-0.219","0.497","0.447","0.149","-0.197","0.643","0.150","-0.237","0.537","0.446","0.162","-0.211","0.711"
|
||||
"14","nihss_0","nihss_0","0.106","0.007","0.204","0.036","0.106","0.007","0.204","0.117","0.010","0.224","0.032","0.117","0.010","0.224"
|
||||
"15","any_reperf","any_reperf.yes","0.021","-0.127","0.168","0.785","0.021","-0.119","0.183","-0.013","-0.174","0.149","0.879","-0.012","-0.160","0.160"
|
||||
"16","mdi_6_newobs_enr","mdi_6_newobs_enr","mdi_6_newobs_enr","mdi_6_newobs_enr","mdi_6_newobs_enr","mdi_6_newobs_enr","mdi_6_newobs_enr","mdi_6_newobs_enr","mdi_6_newobs_enr","mdi_6_newobs_enr","mdi_6_newobs_enr","mdi_6_newobs_enr","mdi_6_newobs_enr","mdi_6_newobs_enr","mdi_6_newobs_enr","mdi_6_newobs_enr"
|
||||
"17","active_treat","active_treat.yes","-0.084","-0.249","0.081","0.316","-0.081","-0.220","0.084","-0.068","-0.237","0.100","0.426","-0.066","-0.211","0.105"
|
||||
"18","pase_0","pase_0","-0.001","-0.003","-0.000","0.002","-0.001","-0.003","-0.000","-0.001","-0.003","-0.000","0.017","-0.001","-0.003","-0.000"
|
||||
"19","female","female.yes","0.246","0.074","0.418","0.005","0.279","0.077","0.519","0.264","0.077","0.451","0.006","0.302","0.080","0.570"
|
||||
"20","age","age","0.001","-0.005","0.008","0.658","0.001","-0.005","0.008","-0.007","-0.015","0.000","0.062","-0.007","-0.015","0.000"
|
||||
"21","cohab","cohab.yes","-0.094","-0.269","0.080","0.290","-0.090","-0.236","0.084","-0.008","-0.197","0.181","0.935","-0.008","-0.179","0.199"
|
||||
"22","ever_smoker","ever_smoker.yes","-0.021","-0.197","0.155","0.817","-0.020","-0.178","0.168","-0.001","-0.183","0.182","0.994","-0.001","-0.167","0.199"
|
||||
"23","diabetes","diabetes.yes","0.012","-0.260","0.284","0.932","0.012","-0.229","0.329","-0.017","-0.299","0.265","0.905","-0.017","-0.259","0.303"
|
||||
"24","hypertension","hypertension.yes","0.232","0.068","0.396","0.006","0.261","0.070","0.487","0.100","-0.078","0.278","0.272","0.105","-0.075","0.321"
|
||||
"25","afli","afli.yes","-0.025","-0.255","0.206","0.835","-0.024","-0.225","0.229","-0.063","-0.300","0.175","0.605","-0.061","-0.259","0.191"
|
||||
"26","ami","ami.yes","0.200","-0.103","0.502","0.195","0.221","-0.098","0.652","0.303","-0.031","0.638","0.076","0.354","-0.031","0.893"
|
||||
"27","tci","tci.yes","-0.660","-1.180","-0.140","0.013","-0.483","-0.693","-0.130","-0.695","-1.210","-0.180","0.008","-0.501","-0.702","-0.165"
|
||||
"28","pad","pad.yes","0.416","0.001","0.831","0.050","0.516","0.001","1.296","0.304","-0.155","0.762","0.194","0.355","-0.143","1.143"
|
||||
"29","nihss_0","nihss_0","0.142","0.024","0.260","0.018","0.142","0.024","0.260","0.134","0.007","0.260","0.039","0.134","0.007","0.260"
|
||||
"30","any_reperf","any_reperf.yes","-0.028","-0.198","0.142","0.749","-0.027","-0.179","0.153","-0.035","-0.222","0.153","0.715","-0.034","-0.199","0.165"
|
||||
"","name","co.x","biv_lo","biv_hi","biv_pv","co.y","mul_lo","mul_hi","mul_pv"
|
||||
"1","mdi_1_enr","mdi_1_enr","mdi_1_enr","mdi_1_enr","mdi_1_enr","mdi_1_enr","mdi_1_enr","mdi_1_enr","mdi_1_enr"
|
||||
"2","pase_0_qq_2","-0.589","-2.679","1.500","0.580","-0.036","-2.199","2.127","0.974"
|
||||
"3","pase_0_qq_3","-2.279","-4.151","-0.406","0.017","-2.361","-4.189","-0.532","0.011"
|
||||
"4","pase_0_qq_4","-3.019","-4.683","-1.355","0.000","-2.382","-4.285","-0.480","0.014"
|
||||
"5","femaleyes","1.392","-0.017","2.801","0.053","1.680","0.211","3.150","0.025"
|
||||
"6","age","0.003","-0.050","0.056","0.903","-0.059","-0.119","0.001","0.055"
|
||||
"7","cohabyes","-0.001","-1.393","1.390","0.998","0.415","-1.044","1.874","0.576"
|
||||
"8","ever_smokeryes","-0.904","-2.286","0.479","0.200","-0.798","-2.129","0.534","0.240"
|
||||
"9","diabetesyes","0.949","-1.098","2.996","0.363","0.959","-1.041","2.960","0.347"
|
||||
"10","hypertensionyes","1.395","0.089","2.702","0.036","0.636","-0.677","1.948","0.342"
|
||||
"11","afliyes","-1.047","-2.746","0.652","0.227","-1.185","-2.807","0.438","0.152"
|
||||
"12","amiyes","2.527","-0.491","5.545","0.101","2.150","-0.941","5.240","0.172"
|
||||
"13","tciyes","2.151","-4.206","8.508","0.507","2.137","-4.254","8.528","0.512"
|
||||
"14","padyes","3.275","-1.509","8.058","0.179","4.002","-1.489","9.493","0.153"
|
||||
"15","nihss_0","0.176","0.032","0.320","0.017","0.182","0.032","0.332","0.018"
|
||||
"16","any_reperfyes","0.151","-1.191","1.493","0.825","-0.236","-1.643","1.171","0.742"
|
||||
"17","mdi_6_newobs_enr","mdi_6_newobs_enr","mdi_6_newobs_enr","mdi_6_newobs_enr","mdi_6_newobs_enr","mdi_6_newobs_enr","mdi_6_newobs_enr","mdi_6_newobs_enr","mdi_6_newobs_enr"
|
||||
"18","pase_0_qq_2","-1.939","-4.202","0.325","0.093","-1.469","-3.817","0.880","0.220"
|
||||
"19","pase_0_qq_3","-3.334","-5.389","-1.279","0.002","-3.346","-5.484","-1.207","0.002"
|
||||
"20","pase_0_qq_4","-3.218","-5.354","-1.083","0.003","-2.767","-5.190","-0.344","0.025"
|
||||
"21","femaleyes","2.350","0.768","3.932","0.004","2.266","0.547","3.986","0.010"
|
||||
"22","age","0.009","-0.054","0.072","0.779","-0.054","-0.122","0.013","0.115"
|
||||
"23","cohabyes","-1.162","-2.738","0.414","0.148","-0.409","-2.032","1.213","0.620"
|
||||
"24","ever_smokeryes","0.011","-1.502","1.525","0.988","0.241","-1.259","1.741","0.753"
|
||||
"25","diabetesyes","-0.343","-2.379","1.694","0.741","-0.544","-2.598","1.511","0.603"
|
||||
"26","hypertensionyes","1.357","-0.047","2.761","0.058","0.592","-0.914","2.099","0.440"
|
||||
"27","afliyes","-0.092","-2.074","1.889","0.927","-0.682","-2.616","1.252","0.488"
|
||||
"28","amiyes","1.483","-1.174","4.141","0.273","2.282","-0.716","5.279","0.135"
|
||||
"29","tciyes","-4.472","-6.447","-2.498","0.000","-4.458","-6.453","-2.462","0.000"
|
||||
"30","padyes","2.129","-1.510","5.769","0.251","1.461","-2.690","5.611","0.490"
|
||||
"31","nihss_0","0.225","0.045","0.404","0.014","0.208","0.009","0.407","0.040"
|
||||
"32","any_reperfyes","-0.036","-1.480","1.409","0.961","-0.369","-1.839","1.101","0.622"
|
||||
|
|
@ -10,7 +10,7 @@ library(dplyr)
|
||||
library(tidyr)
|
||||
|
||||
|
||||
dta_all<-read.csv("/Volumes/Data/depression/dep_dataset.csv")
|
||||
dta_all<-read.csv("/Volumes/Data 1/depression/dep_dataset.csv")
|
||||
|
||||
|
||||
# Defining patients to include for analysis
|
||||
@ -62,9 +62,9 @@ dta$pase_0_bin<-factor(dta$pase_0_bin,levels=c("lower","higher"))
|
||||
|
||||
dta$nihss_0_isna<-is.na(dta$nihss_0)
|
||||
|
||||
dta$pase_0_q<-factor(dta$pase_0_q)
|
||||
|
||||
|
||||
vars<-c("pase_0",
|
||||
vars<-c("pase_0_q",
|
||||
"female",
|
||||
"age",
|
||||
"cohab",
|
||||
@ -76,11 +76,13 @@ vars<-c("pase_0",
|
||||
"tci",
|
||||
"pad",
|
||||
"nihss_0",
|
||||
"any_reperf")
|
||||
"any_reperf",
|
||||
"active_treat")
|
||||
|
||||
# tbl1_vars<-c("thrombolysis", "thrombechtomy","inc_time")
|
||||
|
||||
labels_all<-list(active_treat~"Active trial treatment",
|
||||
pase_0_q~"PASE score quartile",
|
||||
pase_0~"PASE score",
|
||||
age~"Age",
|
||||
female~"Female sex",
|
||||
|
89
experiments_splines.R
Normal file
89
experiments_splines.R
Normal file
@ -0,0 +1,89 @@
|
||||
# Experiments
|
||||
|
||||
library("sandwich")
|
||||
library("lmtest")
|
||||
|
||||
vars<-c("pase_0", # New variables for analysis
|
||||
"female",
|
||||
"age",
|
||||
"cohab",
|
||||
"ever_smoker",
|
||||
"diabetes",
|
||||
"hypertension",
|
||||
"afli",
|
||||
"ami",
|
||||
"tci",
|
||||
"pad")
|
||||
|
||||
m<-lm(dta$mdi_1_enr~., data = dta[,vars])
|
||||
summary(m)
|
||||
coeftest(m, vcov = sandwich)
|
||||
coefci(m, vcov = sandwich)
|
||||
|
||||
source("function_reg_table_robust.R")
|
||||
|
||||
reg_table(X = dta[,vars], y = dta[,"mdi_1_enr"]) |> gt()
|
||||
|
||||
## Så virker funktionen. Indbygges i script som tidligere.
|
||||
|
||||
|
||||
vars<-c("pase_0", # New variables for analysis
|
||||
"female",
|
||||
"age",
|
||||
"cohab",
|
||||
"ever_smoker",
|
||||
"diabetes",
|
||||
"hypertension",
|
||||
"afli",
|
||||
"ami",
|
||||
"tci",
|
||||
"pad")
|
||||
quants <- quantile(dta$pase_0,na.rm=TRUE)
|
||||
|
||||
m<-lm(dta$mdi_1_enr~splines::ns(pase_0, knots = quants[2:4])+., data = dta[,vars])
|
||||
|
||||
coeftest(m, vcov = sandwich) |> tbl_regression() |> bold_p()
|
||||
|
||||
|
||||
p1 <- ggplot(dta) +
|
||||
aes(pase_0,mdi_1_enr) +
|
||||
geom_point(na.rm = TRUE) +
|
||||
geom_smooth(method='lm', formula= y~x, na.rm = TRUE)+
|
||||
labs(title="Linear fit", x = "PASE score", y = "MDI score 1 month")
|
||||
|
||||
p2 <- ggplot() +
|
||||
aes(m$model$pase_0, predict(m)) +
|
||||
geom_point(color="blue") +
|
||||
geom_smooth(method='lm',formula = y~splines::ns(x, knots = quants[2:4])) +
|
||||
geom_vline(xintercept=quants) +
|
||||
ylim(0,max(dta$mdi_1_enr)) +
|
||||
labs(title="Qubic splines with predicted data", x = "PASE score", y = "MDI score 1 month")
|
||||
|
||||
library(patchwork)
|
||||
p1+p2
|
||||
|
||||
# p2 <- ggplot() +
|
||||
# aes(m$model$pase_0, predict(m)) +
|
||||
# geom_point(color="maroon",shape=25) +
|
||||
# geom_smooth(method='lm',formula = y~splines::ns(x, knots = quants[2:4])) +
|
||||
# geom_vline(xintercept=quants) +
|
||||
# # ylim(0,max(dta$mdi_1_enr)) +
|
||||
# labs(title="Qubic splines with predicted data", x = "PASE score", y = "MDI score 1 month")+
|
||||
# theme_bw(14)
|
||||
|
||||
library(npreg)
|
||||
|
||||
dta_c <- dta[,c("mdi_1_enr","pase_0")] |> na.omit()
|
||||
|
||||
x <- dta_c$pase_0
|
||||
y <- dta_c$mdi_1_enr
|
||||
|
||||
m1<-lm(dta$mdi_1_enr~dta$pase_0)
|
||||
|
||||
|
||||
plot(ss(x, y, knots=quants), xlab = "PASE score", ylab = "MDI score 1 month", ylim=c(min(y),max(y)))
|
||||
# rug(x)
|
||||
points(x,y)
|
||||
abline(coef(m1), lty = 2)
|
||||
legend("topright", legend = c("ss", "lm"), lty = 1:2, bty = "n")
|
||||
|
@ -42,6 +42,7 @@ for (j in colnames(X)){
|
||||
}
|
||||
|
||||
df_b<-df_b|>data.frame()|>mutate(across(matches('co|lo|hi'),as.numeric))
|
||||
colnames(df_b)[3:ncol(df_b)]<-paste0("biv_",colnames(df_b)[3:ncol(df_b)])
|
||||
}
|
||||
|
||||
if (m.mul){
|
||||
@ -70,15 +71,11 @@ for (j in colnames(X)){
|
||||
}
|
||||
|
||||
df_m<-df_m|>data.frame()|>mutate(across(matches('co|lo|hi'),as.numeric))
|
||||
colnames(df_m)[3:ncol(df_m)]<-paste0("mul_",colnames(df_m)[3:ncol(df_m)])
|
||||
|
||||
}
|
||||
|
||||
|
||||
|
||||
if (all(m.biv,m.mul)){
|
||||
colnames(df_b)[3:ncol(df_b)]<-paste0("biv_",colnames(df_b)[3:ncol(df_b)])
|
||||
colnames(df_m)[3:ncol(df_m)]<-paste0("mul_",colnames(df_m)[3:ncol(df_m)])
|
||||
|
||||
return(merge(df_b,df_m,by=c("name","pred"),sort=FALSE))
|
||||
} else if (m.biv) {
|
||||
return(df_b)
|
||||
|
74
function_reg_table_robust.R
Normal file
74
function_reg_table_robust.R
Normal file
@ -0,0 +1,74 @@
|
||||
reg_table <- function(X,y,m.biv=TRUE,m.mul=TRUE,inter.add=NULL,robust=TRUE){
|
||||
# method One of biv, mul, biv_mul
|
||||
|
||||
# X = dta[,vars]
|
||||
# y = dta[,"mdi_1_enr"]
|
||||
|
||||
cols<-c("name", "co", "lo", "hi", "pv")
|
||||
|
||||
if(!is.null(inter.add)){
|
||||
form_add<-paste0(paste0(inter.add,collapse = "*"),"+")
|
||||
m.biv <- FALSE # If interaction term is added, only multivariate is performed.
|
||||
} else {
|
||||
form_add=NULL
|
||||
}
|
||||
|
||||
if (m.biv){
|
||||
df_b <- data.frame(matrix(NA, ncol = length(cols)))
|
||||
names(df_b)<-cols
|
||||
|
||||
|
||||
for (j in colnames(X)){
|
||||
m<-lm(formula(paste0("y~",j)),X)
|
||||
if(robust){
|
||||
m <- coeftest(m, vcov = sandwich)
|
||||
pv <- m[-1,4] # Avoids dependency
|
||||
} else {
|
||||
pv <- summary(m)$coefficients[-1,4] # Avoids dependency
|
||||
}
|
||||
|
||||
ci <- confint(m)
|
||||
lo <- ci[-1, 1]
|
||||
hi <- ci[-1, 2]
|
||||
co <- coef(m)[-1]
|
||||
|
||||
df_b <- rbind(df_b, cbind(name=names(co), co, lo, hi, pv))
|
||||
|
||||
}
|
||||
|
||||
df_b <- df_b[-1,]
|
||||
|
||||
df_b<-df_b|>data.frame()|>mutate(across(matches('co|lo|hi'),as.numeric))
|
||||
colnames(df_b)[3:ncol(df_b)]<-paste0("biv_",colnames(df_b)[3:ncol(df_b)])
|
||||
}
|
||||
|
||||
if (m.mul){
|
||||
m<-lm(formula(paste0("y~",form_add,".")),X)
|
||||
if(robust){
|
||||
m <- coeftest(m, vcov = sandwich)
|
||||
pv <- m[-1,4] # Avoids dependency
|
||||
} else {
|
||||
pv <- summary(m)$coefficients[-1,4] # Avoids dependency
|
||||
}
|
||||
|
||||
ci <- confint(m)
|
||||
lo <- ci[-1, 1]
|
||||
hi <- ci[-1, 2]
|
||||
co <- coef(m)[-1]
|
||||
|
||||
df_m <- cbind(name=c(names(co)), co, lo, hi, pv)
|
||||
|
||||
df_m<-df_m|>data.frame()|>mutate(across(matches('co|lo|hi'),as.numeric))
|
||||
colnames(df_m)[3:ncol(df_m)]<-paste0("mul_",colnames(df_m)[3:ncol(df_m)])
|
||||
|
||||
}
|
||||
|
||||
if (all(m.biv,m.mul)){
|
||||
merge(df_b,df_m,by=c("name"),sort=FALSE)
|
||||
} else if (m.biv) {
|
||||
return(df_b)
|
||||
} else {
|
||||
df_m
|
||||
}
|
||||
|
||||
}
|
362
master.Rmd
Normal file
362
master.Rmd
Normal file
@ -0,0 +1,362 @@
|
||||
---
|
||||
title: "Master file for analysis"
|
||||
author: "Andreas Gammelgaard Damsbo"
|
||||
date: "`r format(Sys.time(), '%d.%b.%Y')`"
|
||||
toc: true
|
||||
output:
|
||||
html_document:
|
||||
df_print: paged
|
||||
---
|
||||
|
||||
# Noter
|
||||
|
||||
Ny analyse efter snak med Jan 14.10.22
|
||||
|
||||
Plan:
|
||||
|
||||
- Analyser med rebust variance estimering (sandwich eller clubSandwich) for at komme omkring transformation af outcome.
|
||||
- Opdel primær exposure (PASE0) i fire gupper
|
||||
- Suppler med spline-k analyse med fire knuder
|
||||
- Behøver visuel tolkning. Jan bruger natural splines. splines::ns()
|
||||
- Supplerende analyse med
|
||||
|
||||
|
||||
# Overview
|
||||
```{r}
|
||||
source("data_format.R")
|
||||
|
||||
dta |> skimr::skim(c(vars, "mdi_1_enr","mdi_6_newobs_enr", "active_treat", "pase_0"))
|
||||
```
|
||||
|
||||
|
||||
# Table 1
|
||||
|
||||
```{r}
|
||||
source("data_format.R")
|
||||
|
||||
source("table_1.R")
|
||||
|
||||
tbl_1
|
||||
|
||||
write.csv(tbl_1[["_data"]][c(3,4,6:10)],"table_1_quarts.csv")
|
||||
```
|
||||
|
||||
|
||||
|
||||
# Primære analyse
|
||||
|
||||
```{r}
|
||||
## =============================================================================
|
||||
## Primary regression analysis
|
||||
## =============================================================================
|
||||
|
||||
source("data_format.R")
|
||||
|
||||
outs<-c("mdi_1_enr","mdi_6_newobs_enr")
|
||||
|
||||
lbl_x <- NULL # Extra label in file name
|
||||
|
||||
inter_reg <- NULL # Interaction variables to include (only multivariate)
|
||||
|
||||
biv_mul <- TRUE # Sets flag for both bivariate and multivariate or only multivariate analysis
|
||||
|
||||
robust_ci <- TRUE
|
||||
|
||||
print_tbl <- TRUE # Print tables? T/F
|
||||
|
||||
source("biv_mul_man.R")
|
||||
|
||||
export
|
||||
```
|
||||
|
||||
|
||||
|
||||
# Spline analyse
|
||||
|
||||
## One month
|
||||
|
||||
```{r message=FALSE, warning=FALSE}
|
||||
library("sandwich")
|
||||
library("lmtest")
|
||||
|
||||
source("data_format.R")
|
||||
|
||||
vars<-c("pase_0", # New variables for analysis
|
||||
"female",
|
||||
"age",
|
||||
"cohab",
|
||||
"ever_smoker",
|
||||
"diabetes",
|
||||
"hypertension",
|
||||
"afli",
|
||||
"ami",
|
||||
"tci",
|
||||
"pad",
|
||||
"active_treat")
|
||||
quants <- quantile(dta$pase_0,na.rm=TRUE)
|
||||
|
||||
m<-lm(dta$mdi_1_enr~splines::ns(pase_0, knots = quants[2:4])+., data = dta[,vars])
|
||||
|
||||
coeftest(m, vcov = sandwich) |> tbl_regression() |> bold_p()
|
||||
```
|
||||
|
||||
|
||||
## Six months
|
||||
|
||||
```{r}
|
||||
m<-lm(dta$mdi_6_newobs_enr~splines::ns(pase_0, knots = quants[2:4])+., data = dta[,vars])
|
||||
|
||||
coeftest(m, vcov = sandwich) |> tbl_regression() |> bold_p()
|
||||
```
|
||||
|
||||
## Ploting
|
||||
|
||||
```{r}
|
||||
library(ggplot2)
|
||||
# dta[,vars]
|
||||
spline_plot <- function(ds=dta,
|
||||
x.n="pase_0",
|
||||
y.n,
|
||||
t.lab = "Model fit",
|
||||
x.lab = "PASE score",
|
||||
y.lab="MDI score",
|
||||
l.size = .7,
|
||||
l.color = "black",
|
||||
l.type = c("dotdash", "solid"),
|
||||
l.lab = c("Linear", "Cubic \nsplines"),
|
||||
p.color = "grey50",
|
||||
p.shape=20,
|
||||
p.size=.5,
|
||||
s.knots=quants,
|
||||
th.size=12,
|
||||
m.var=NULL){
|
||||
p <- ggplot() +
|
||||
aes(ds[,x.n],ds[,y.n]) +
|
||||
geom_point(na.rm = TRUE,color=p.color,shape=p.shape, size=p.size) +
|
||||
geom_smooth(method='lm', formula= y~x, na.rm = TRUE, se = FALSE, aes(linetype = "A"),size=l.size, color=l.color) +
|
||||
geom_vline(xintercept=s.knots[2:(length(quants)-1)], linetype = "dashed") +
|
||||
labs(title=t.lab, x = x.lab, y = y.lab)+
|
||||
theme_bw(th.size)
|
||||
|
||||
if (!is.null(m.var)){
|
||||
m <- lm(ds[,y.n]~splines::ns(ds[,x.n], knots = s.knots[2:(length(quants)-1)])+., data = ds[,m.var])
|
||||
|
||||
df <- cbind(ds[x.n],stats::predict(m, newdata=ds, interval="confidence", method="lm"))
|
||||
|
||||
p + geom_smooth(data=df, aes(x=df[,x.n], y=fit, ymin=lwr, ymax=upr, linetype = "B"), size = l.size, colour = l.color, se = TRUE, stat = "smooth", na.rm=TRUE)+
|
||||
scale_linetype_manual(name="Fit lines", values=l.type, labels = l.lab)
|
||||
} else {
|
||||
p+
|
||||
geom_smooth(method='lm',formula = y~splines::ns(x, knots = s.knots[2:(length(quants)-1)]), na.rm = TRUE, aes(linetype = "B"),size=l.size, color=l.color)+
|
||||
scale_linetype_manual(name="Fit lines", values=l.type, labels = l.lab)
|
||||
}
|
||||
}
|
||||
```
|
||||
|
||||
```{r}
|
||||
ds=dta
|
||||
x.n="pase_0"
|
||||
y.n="mdi_1_enr"
|
||||
t.lab = "Model fit"
|
||||
x.lab = "PASE score"
|
||||
y.lab="MDI score"
|
||||
l.size = .7
|
||||
l.color = "black"
|
||||
l.type = c("dotdash", "solid")
|
||||
l.lab = c("Linear", "Cubic \nsplines")
|
||||
p.color = "grey50"
|
||||
p.shape=20
|
||||
p.size=.5
|
||||
s.knots=quants
|
||||
th.size=12
|
||||
m.var=c(vars,"mdi_1_enr")
|
||||
```
|
||||
|
||||
|
||||
```{r out.width="100%"}
|
||||
vars_all <- c(vars,"mdi_1_enr")
|
||||
|
||||
p1 <- dta |> select(c("mdi_1_enr",vars)) |> spline_plot(y.n="mdi_1_enr",t.lab="One month")
|
||||
p2 <- spline_plot(y.n="mdi_6_newobs_enr",t.lab="Six months")
|
||||
|
||||
dta |> select(c("mdi_1_enr",vars)) |> spline_plot(y.n="mdi_1_enr",t.lab="One month",m.var=c(vars,"mdi_1_enr"))
|
||||
|
||||
library(patchwork)
|
||||
p1/p2 +
|
||||
plot_layout(guides = "collect") +
|
||||
plot_annotation(tag_levels = 'A',
|
||||
caption="Vertical dashed lines mark PASE score quartiles.")
|
||||
|
||||
ggsave("spline_plot.png", plot = last_plot(), device = NULL, path = NULL,
|
||||
scale = 1, width = 150, height = 200, dpi = 450, limitsize = TRUE,
|
||||
units = "mm")
|
||||
```
|
||||
|
||||
## Multivariate
|
||||
|
||||
```{r}
|
||||
df <- dta[,c(vars,"mdi_6_newobs_enr")]
|
||||
model <- lm(mdi_6_newobs_enr~splines::ns(pase_0, knots = quants[2:4])+., data = df)
|
||||
# model <- coeftest(model, vcov = sandwich)
|
||||
|
||||
df <- cbind(df,stats::predict(model, newdata=dta, interval="confidence"))
|
||||
|
||||
|
||||
g <- ggplot(df, aes(x=pase_0))
|
||||
g <- g + geom_point(aes(y = fit), size = 2, colour = "blue")
|
||||
g <- g + geom_smooth(data=df, aes(y=fit, ymin=lwr, ymax=upr), size = 1.5,
|
||||
colour = "red", se = TRUE, stat = "smooth")
|
||||
```
|
||||
|
||||
|
||||
# Kun indsamlede MDI
|
||||
|
||||
```{r}
|
||||
## =============================================================================
|
||||
## Sensitivity regression analysis
|
||||
## =============================================================================
|
||||
|
||||
source("data_format.R")
|
||||
|
||||
outs<-c("mdi_1","mdi_6")
|
||||
|
||||
lbl_x <- "_sens" # Extra label in file name
|
||||
|
||||
inter_reg <- NULL # Interaction variables to include (only multivariate)
|
||||
|
||||
biv_mul <- TRUE # Sets flag for both bivariate and multivariate or only multivariate analysis
|
||||
|
||||
robust_ci <- TRUE
|
||||
|
||||
print_tbl <- TRUE # Print tables? T/F
|
||||
|
||||
source("biv_mul_man.R")
|
||||
|
||||
export
|
||||
|
||||
# Notes
|
||||
# - Eliminate anything on stratification to slim the functions
|
||||
# - Move whole setup over from "00 master.R", easy block execution in .Rmd
|
||||
```
|
||||
|
||||
# Interaktion
|
||||
|
||||
```{r}
|
||||
## =============================================================================
|
||||
## Interaction regression analysis
|
||||
## =============================================================================
|
||||
|
||||
source("data_format.R")
|
||||
|
||||
vars<-c("active_treat", # vars() is defined in data_format.R, here "
|
||||
"pase_0",
|
||||
"female",
|
||||
"age",
|
||||
"cohab",
|
||||
"ever_smoker",
|
||||
"diabetes",
|
||||
"hypertension",
|
||||
"afli",
|
||||
"ami",
|
||||
"tci",
|
||||
"pad",
|
||||
"nihss_0",
|
||||
"any_reperf")
|
||||
|
||||
outs<-c("mdi_1_enr","mdi_6_newobs_enr")
|
||||
|
||||
lbl_x <- "_inter" # Extra label in file name
|
||||
|
||||
inter_reg <- c("active_treat","pase_0") # Interaction variables to include (only multivariate)
|
||||
|
||||
biv_mul <- TRUE # Sets flag for both bivariate and multivariate or only multivariate analysis
|
||||
|
||||
print_tbl <- TRUE # Print tables? T/F
|
||||
|
||||
|
||||
# source("regression_interaction.R")
|
||||
|
||||
source("biv_mul_man.R")
|
||||
|
||||
export
|
||||
```
|
||||
|
||||
|
||||
# NIHSS-MDI
|
||||
|
||||
```{r}
|
||||
## =============================================================================
|
||||
## NIHSS~PASE0 regression analysis
|
||||
## =============================================================================
|
||||
|
||||
source("data_format.R")
|
||||
|
||||
vars<-c("pase_0_q", # New variables for analysis
|
||||
"female",
|
||||
"age",
|
||||
"cohab",
|
||||
"ever_smoker",
|
||||
"diabetes",
|
||||
"hypertension",
|
||||
"afli",
|
||||
"ami",
|
||||
"tci",
|
||||
"pad")
|
||||
|
||||
outs<-c("nihss_0")
|
||||
|
||||
lbl_x <- "_nihss-pase" # Extra label in file name
|
||||
|
||||
inter_reg <- NULL # Interaction variables to include (only multivariate)
|
||||
|
||||
biv_mul <- TRUE # Sets flag for both bivariate and multivariate or only multivariate analysis
|
||||
|
||||
print_tbl <- TRUE # Print tables? T/F
|
||||
|
||||
# source("regression_nihss-pase.R")
|
||||
|
||||
source("biv_mul_man.R")
|
||||
|
||||
export
|
||||
```
|
||||
|
||||
```{r message=FALSE, warning=FALSE}
|
||||
vars<-c("pase_0", # New variables for analysis
|
||||
"female",
|
||||
"age",
|
||||
"cohab",
|
||||
"ever_smoker",
|
||||
"diabetes",
|
||||
"hypertension",
|
||||
"afli",
|
||||
"ami",
|
||||
"tci",
|
||||
"pad")
|
||||
quants <- quantile(dta$pase_0,na.rm=TRUE)
|
||||
|
||||
m<-lm(dta$nihss_0~splines::ns(pase_0, knots = quants[2:4])+., data = dta[,vars])
|
||||
|
||||
coeftest(m, vcov = sandwich) |> tbl_regression() |> bold_p()
|
||||
```
|
||||
|
||||
```{r}
|
||||
library(ggplot2)
|
||||
p1 <- ggplot(dta) +
|
||||
aes(pase_0,nihss_0) +
|
||||
geom_point(na.rm = TRUE,color="#008080",shape=23) +
|
||||
geom_smooth(method='lm', formula= y~x, na.rm = TRUE, se = FALSE)+
|
||||
labs(title="Linear fit", x = "PASE score", y = "Acute NIHSS")+
|
||||
theme_bw(14)
|
||||
|
||||
p2 <- ggplot() +
|
||||
aes(m$model$pase_0, predict(m)) +
|
||||
geom_point(color="maroon",shape=25) +
|
||||
geom_smooth(method='lm',formula = y~splines::ns(x, knots = quants[2:4])) +
|
||||
geom_vline(xintercept=quants) +
|
||||
# ylim(0,max(dta$mdi_1_enr)) +
|
||||
labs(title="Qubic splines with predicted data", x = "PASE score", y = "Acute NIHSS")+
|
||||
theme_bw(14)
|
||||
|
||||
library(patchwork)
|
||||
p1+p2
|
||||
```
|
11
table_1.R
11
table_1.R
@ -1,15 +1,18 @@
|
||||
tbl1_vars<-c("active_treat",vars,"inc_time")
|
||||
tbl1_vars<-c("active_treat",vars,"inc_time","mdi_1_enr","mdi_6_newobs_enr","mdi_1","mdi_6_newobs")
|
||||
|
||||
tbl_1<-dta|>
|
||||
tbl_summary(missing = "ifany",
|
||||
tbl_summary(by = "pase_0_q",
|
||||
missing = "ifany",
|
||||
include = all_of(tbl1_vars),
|
||||
missing_text="(Missing)",
|
||||
label = lab_sel(labels_all,tbl1_vars)
|
||||
missing_text="(Missing)"#,
|
||||
# label = lab_sel(labels_all,tbl1_vars)
|
||||
)|>
|
||||
add_n()|>
|
||||
add_overall() |>
|
||||
as_gt() |>
|
||||
# modify with gt functions
|
||||
gt::tab_header("Baseline Characteristics") |>
|
||||
gt::tab_options(
|
||||
table.font.size = "small",
|
||||
data_row.padding = gt::px(1))
|
||||
|
||||
|
1051
tbl_reg_1.RTF
1051
tbl_reg_1.RTF
File diff suppressed because it is too large
Load Diff
1051
tbl_reg_6.RTF
1051
tbl_reg_6.RTF
File diff suppressed because it is too large
Load Diff
Loading…
x
Reference in New Issue
Block a user