commit all: what a mess!

This commit is contained in:
Andreas Gammelgaard Damsbo 2023-09-19 14:23:23 -07:00
parent f7d1f3ce89
commit 9821318c51
25 changed files with 910 additions and 2327 deletions

1
.gitignore vendored
View File

@ -52,3 +52,4 @@ po/*~
*.zip *.zip
*.pdf *.pdf
*.csv *.csv
/*.csv

View File

@ -10,9 +10,9 @@
# #
# Focus has been on universal functions, and the amount of flags has accumulated... # Focus has been on universal functions, and the amount of flags has accumulated...
# #
# Only retransformation is performed on independent variables (these are not marked in the exported tables). # No transformation is performed. Instead a sensitivity analysis is performed using splines.
# Coefs and CIs are transformed according to this: #
# https://stats.stackexchange.com/questions/93089/reporting-regression-statistics-after-logarithmic-transformation to allow for interpretation. # Robust CIs are calculated for all analyses.
## ============================================================================= ## =============================================================================
## Table 1 ## Table 1
@ -24,6 +24,7 @@ source("table_1.R")
tbl_1 tbl_1
## ============================================================================= ## =============================================================================
## Primary regression analysis ## Primary regression analysis
## ============================================================================= ## =============================================================================
@ -40,15 +41,7 @@ biv_mul <- TRUE # Sets flag for both bivariate and multivariate or only multivar
strat_var <- NULL # Variable to stratify by. Only one variable(!) strat_var <- NULL # Variable to stratify by. Only one variable(!)
trans_vars <- TRUE # Transform variables? T/F robust_ci <- TRUE
sqrt_vars<-"pase_0" # Variables to sqrt-transfom
log1p_vars<-"nihss_0" # Variables to log1p-transform, not outcome
log_vars <- NULL # Variables to log-transform
log1p_vars_all<-c(log1p_vars,outs) # All variables to log1p-transform, incl outcome
trans_back <- TRUE # Back transform variables? T/F
print_tbl <- TRUE # Print tables? T/F print_tbl <- TRUE # Print tables? T/F
@ -85,15 +78,7 @@ biv_mul <- TRUE # Sets flag for both bivariate and multivariate or only multivar
strat_var <- NULL # Variable to stratify by. Only one variable(!) strat_var <- NULL # Variable to stratify by. Only one variable(!)
trans_vars <- TRUE # Transform variables? T/F robust_ci <- TRUE
sqrt_vars<-"pase_0" # Variables to sqrt-transfom
log1p_vars<-"nihss_0" # Variables to log1p-transform, not outcome
log_vars <- NULL # Variables to log-transform
log1p_vars_all<-c(log1p_vars,outs) # All variables to log1p-transform, incl outcome
trans_back <- TRUE # Back transform variables? T/F
print_tbl <- TRUE # Print tables? T/F print_tbl <- TRUE # Print tables? T/F
@ -120,6 +105,21 @@ source("biv_mul_man.R")
source("data_format.R") source("data_format.R")
vars<-c("active_treat", # vars() is defined in data_format.R, here "
"pase_0",
"female",
"age",
"cohab",
"ever_smoker",
"diabetes",
"hypertension",
"afli",
"ami",
"tci",
"pad",
"nihss_0",
"any_reperf")
outs<-c("mdi_1_enr","mdi_6_newobs_enr") outs<-c("mdi_1_enr","mdi_6_newobs_enr")
lbl_x <- "_inter" # Extra label in file name lbl_x <- "_inter" # Extra label in file name
@ -128,17 +128,9 @@ inter_reg <- c("active_treat","pase_0") # Interaction variables to include (only
biv_mul <- TRUE # Sets flag for both bivariate and multivariate or only multivariate analysis biv_mul <- TRUE # Sets flag for both bivariate and multivariate or only multivariate analysis
trans_vars <- TRUE # Transform variables? T/F
strat_var <- NULL # Variable to stratify by. Only one variable(!) strat_var <- NULL # Variable to stratify by. Only one variable(!)
sqrt_vars<-"pase_0" # Variables to sqrt-transfom robust_ci <- TRUE
log1p_vars<-"nihss_0" # Variables to log1p-transform, not outcome
log_vars <- NULL # Variables to log-transform
log1p_vars_all<-c(log1p_vars,outs) # All variables to log1p-transform, incl outcome
trans_back <- TRUE # Back transform variables? T/F
print_tbl <- TRUE # Print tables? T/F print_tbl <- TRUE # Print tables? T/F
@ -173,19 +165,11 @@ lbl_x <- "_nihss-pase" # Extra label in file name
inter_reg <- NULL # Interaction variables to include (only multivariate) inter_reg <- NULL # Interaction variables to include (only multivariate)
biv_mul <- FALSE # Sets flag for both bivariate and multivariate or only multivariate analysis biv_mul <- TRUE # Sets flag for both bivariate and multivariate or only multivariate analysis
trans_vars <- TRUE # Transform variables? T/F
strat_var <- NULL # Variable to stratify by. Only one variable(!) strat_var <- NULL # Variable to stratify by. Only one variable(!)
sqrt_vars<-"pase_0" # Variables to sqrt-transfom robust_ci <- TRUE
log1p_vars<-NULL # Variables to log1p-transform, not outcome
log_vars <- NULL # Variables to log-transform
log1p_vars_all<-c(outs) # All variables to log1p-transform, incl outcome
trans_back <- TRUE # Back transform variables? T/F
print_tbl <- TRUE # Print tables? T/F print_tbl <- TRUE # Print tables? T/F

118
Archive/biv_mul_man.R Normal file
View File

@ -0,0 +1,118 @@
##
## NOTES
##
## Leaving gtsummary as this is slow and a little inflexible.
##
## =============================================================================
## Requirements
## =============================================================================
source("function_trans_cols.R")
if (trans_vars==TRUE){
# If trans_vars flag is TRUE, transform specified variables
dta<-trans_cols(dta_backup,sqrts=sqrt_vars,log1ps = log1p_vars_all)
} else {dta<-dta_backup}
library(dplyr)
library(gtsummary)
source("function_back_trans.R")
## =============================================================================
## Loop
## =============================================================================
dec <- 3
bm_list<-list()
if (biv_mul){
do_biv=TRUE
do_mul=TRUE
} else {
do_biv=FALSE
do_mul=TRUE
}
for (i in 1:length(outs)){
if (!is.null(strat_var)){
ls<-split(dta,dta[strat_var])
strat_list<-list()
for (j in 1:length(ls)){
X<-ls[[j]][,vars] # Choosing the dataset for the given strata and stated variables
y <- ls[[j]][,outs[i]] # Choosing the outcome data for the given strata and the current outcome variable
# Flagging factors and continous variables
#
sel_f<-X|>
sapply(is.factor)
f.names <- colnames(X)[sel_f]
source("function_reg_table.R")
rt<-reg_table(X,y,m.biv=do_biv,m.mul=do_mul,trans.var = trans_vars,sqrt.vars=sqrt_vars,inter.add=inter_reg)
rt<-rt|>mutate(across(matches('co|lo|hi|pv'),as.numeric))
rt[,grepl('co|lo|hi|pv',names(rt))] <- sapply( round( rt[,grepl('co|lo|hi|pv',names(rt))], 3 ),formatC, format='f', digits=3 )
# Saving the data.frame in indexed list
strat_list[[j]] <- rt
# Using just the first four characters for shorter colnames in "do.call" later.
names(strat_list)[j] <- paste0(substr(strat_var,1,4),
".",
levels(dta[,strat_var])[j])
}
bm_list[[i]] <- do.call(cbind, strat_list) # cbinds all elements in list, independent of number of strata
names(bm_list)[i] <- outs[i]
} else {
X<-dta[,vars]
y <- dta[,outs[i]]
# Flagging factors and continous variables
#
sel_f<-X|>
sapply(is.factor)
f.names <- colnames(X)[sel_f]
source("function_reg_table.R")
rt<-reg_table(X,y,m.biv=do_biv,m.mul=do_mul,trans.var = trans_vars,sqrt.vars=sqrt_vars,inter.add=inter_reg)
rt<-rt|>mutate(across(matches('co|lo|hi|pv'),as.numeric))
rt[,grepl('co|lo|hi|pv',names(rt))] <- sapply( round( rt[,grepl('co|lo|hi|pv',names(rt))], 3 ),formatC, format='f', digits=3 )
bm_list[[i]] <- rt
names(bm_list)[i] <- outs[i]
}
}
## =============================================================================
## Print
## =============================================================================
# File name depending onstratification, transformation and back transformation
if (print_tbl==TRUE){
fnm<-paste0("bm_16_tbl",lbl_x)
if (!is.null(strat_var)){fnm<-paste0(fnm,"_strat")}
if (trans_vars==TRUE){fnm<-paste0(fnm,"_trans")}
# if (trans_back==TRUE){fnm<-paste0(fnm,"_back")}
export<-data.frame()
for (i in 1:length(bm_list)){
export<-rbind(export,paste(names(bm_list)[i]),bm_list[[i]])
}
write.csv(export,paste0(fnm,".csv"))
}

22
Data skim.Rmd Normal file
View File

@ -0,0 +1,22 @@
---
title: "Data overview"
author: "AGDamsbo"
date: "2022-10-03"
output:
html_document:
df_print: paged
---
```{r setup, include=FALSE}
knitr::opts_chunk$set(echo = TRUE)
```
## Data skim
```{r message=FALSE}
source("data_format.R")
dta |> skimr::skim(c(vars, "mdi_1_enr","mdi_6_newobs_enr", "active_treat"))
```

Binary file not shown.

108
NOK.Rmd Normal file
View File

@ -0,0 +1,108 @@
---
title: "NOK"
author: "AGDamsbo"
date: "`r Sys.Date()`"
output: html_document
---
```{r setup, include=FALSE}
knitr::opts_chunk$set(echo = TRUE)
```
## PASE by next of kin
Hermed analyse og oversigt over TALOS patienter med PASE der ikke er udfyldt af dem selv.
## Oversigt efter PASE gruppe
Variablen "own_write" angiver om det af PASE-skemaet fremgår hvorvidt pt selv har udfyldt skemaet. Er TRUE/FALSE og kun TRUE vises.
Variablen "own_answer" er min bedste vurdering udfra den registrerede kommentar, om hvorvidt det er pts eget svar (alternativt vurdering ved pårørende). Er TRUE/FALSE og kun TRUE vises.
Variablen "afasi" angiver grad af afasi ved den akutte NIHSS.
```{r echo=FALSE, message=FALSE, warning=FALSE}
source("api_dataset.R")
source("data_format.R")
df <- dta|> left_join(df_own,by=c("rnumb"="record_id"))
tbl_vars<-unique(c("own_write","own_answer","afasi","active_treat",vars,"inc_time","mdi_1_enr","mdi_6_newobs_enr","mdi_1","mdi_6_newobs"))
```
```{r}
df |>
tbl_summary(by = "pase_0_q",
missing = "ifany",
include = all_of(tbl_vars),
missing_text="(Missing)"#,
# label = lab_sel(labels_all,tbl1_vars)
)|>
add_n()|>
add_overall() |>
gtsummary::italicize_levels() |>
as_gt() |>
# modify with gt functions
gt::tab_header("Baseline Characteristics") |>
gt::tab_options(
table.font.size = "small",
data_row.padding = gt::px(1))
```
## Oversigt efter "own_answer" til sammenligning
```{r}
df |> #mutate(own_answer = own_answer+1) |>
tbl_summary(by = "own_answer",
missing = "ifany",
include = all_of(tbl_vars),
missing_text="(Missing)"#,
# label = lab_sel(labels_all,tbl1_vars)
)|>
add_n()|>
add_overall() |>
add_p() |>
gtsummary::bold_p() |>
gtsummary::italicize_levels() |>
as_gt() |>
# modify with gt functions
gt::tab_header("PASE by next of kin") |>
gt::tab_options(
table.font.size = "small",
data_row.padding = gt::px(1))
```
## Sensititvitetsanalyse
Begrænset til kun at inkludere ptt med eget svar
```{r}
source("data_format.R")
dta <- inner_join(dta,df_own |> filter(own_answer) |> select(record_id),by=c("rnumb"="record_id"))
outs<-c("mdi_1_enr","mdi_6_newobs_enr")
lbl_x <- NULL # Extra label in file name
inter_reg <- NULL # Interaction variables to include (only multivariate)
biv_mul <- TRUE # Sets flag for both bivariate and multivariate or only multivariate analysis
print_tbl <- FALSE # Print tables? T/F
robust_ci = TRUE
# source("biv_mul.R")
source("biv_mul_man.R")
export<-data.frame()
for (i in 1:length(bm_list)){
export<-rbind(export,paste(names(bm_list)[i]),bm_list[[i]])
}
export |> gt::gt()|>
gt::tab_options(
table.font.size = "small",
data_row.padding = gt::px(1))
```

38
api_dataset.R Normal file
View File

@ -0,0 +1,38 @@
# keyring::key_set("talos_api")
df <-
REDCapR::redcap_read_oneshot(
"https://redcap.au.dk/api/",
keyring::key_get("talos_api"),forms = c("basis","reg","nihss_0","pase_0")
)$data |>
dplyr::select(c(
"record_id",
"talos_nihss13_0",
"talos_nihss16_0",
"talos_pase12_0",
"talos_pase12x_0"
))
# For inspection of a few missing.
# ds <- df[df$talos_pase12_0=="Not available",c("record_id","talos_pase10_0","talos_pase12_0")]
library(tidyverse)
# Grov kategorisering
df |>
mutate(own = grepl("(interview)|(hjælp)|(adspurgt)", talos_pase12x_0)) |>
arrange(desc(own)) |> readODS::write_ods("pase.ods")
# Manual sorting
df_own <- readODS::read_ods("pase_edit.ods")
df_own <- df_own |>
mutate(
own_write = talos_pase12_0=="1. Ja",
own_answer = ifelse(own_write, TRUE, own),
afasi = factor(talos_nihss13_0,labels=c("0:ingen","1:mild","2:svær","3:stum",NA))
) |>
select(c("record_id", "own_write", "own_answer", "afasi"))

View File

@ -8,26 +8,21 @@
## Requirements ## Requirements
## ============================================================================= ## =============================================================================
source("function_trans_cols.R") source("function_reg_table_robust.R")
if (trans_vars==TRUE){ # dta<-dta_backup
# If trans_vars flag is TRUE, transform specified variables
dta<-trans_cols(dta_backup,sqrts=sqrt_vars,log1ps = log1p_vars_all)
} else {dta<-dta_backup}
library(dplyr) library(dplyr)
library(gtsummary) library(gtsummary)
library(sandwich)
library(lmtest)
source("function_back_trans.R")
vars_all<-c("active_treat",vars)
## ============================================================================= ## =============================================================================
## Loop ## Loop
## ============================================================================= ## =============================================================================
dec <- 3 dec <- 3
bm_list<-list()
if (biv_mul){ if (biv_mul){
do_biv=TRUE do_biv=TRUE
@ -37,60 +32,28 @@ if (biv_mul){
do_mul=TRUE do_mul=TRUE
} }
for (i in 1:length(outs)){
if (!is.null(strat_var)){ bm_list <- lapply(seq_along(outs), function(i){
ls<-split(dta,dta[strat_var]) X<-dta[,vars]
strat_list<-list() y <- dta[,outs[i]]
for (j in 1:length(ls)){
X<-ls[[i]][,vars]
y <- ls[[i]][,outs[i]]
# Flagging factors and continous variables
#
sel_f<-X|>
sapply(is.factor)
f.names <- colnames(X)[sel_f]
source("function_reg_table.R")
rt<-reg_table(X,y,m.biv=do_biv,m.mul=do_mul,trans.var = trans_vars,sqrt.vars=sqrt_vars,inter.add=inter_reg)
rt<-rt|>mutate(across(matches('co|lo|hi|pv'),as.numeric))
rt[,grepl('co|lo|hi|pv',names(rt))] <- sapply( round( rt[,grepl('co|lo|hi|pv',names(rt))], 3 ),formatC, format='f', digits=3 )
strat_list[[j]] <- rt
names(strat_list)[j] <- levels(dta[,strat_var])[j]
}
bm_list[[i]] <- cbind(names(strat_list)[1],strat_list[[1]],names(strat_list)[2],strat_list[[2]])
names(bm_list)[i] <- outs[i]
} else {
X<-dta[,vars_all]
y <- dta[,outs[i]]
# Flagging factors and continous variables
#
sel_f<-X|>
sapply(is.factor)
f.names <- colnames(X)[sel_f]
source("function_reg_table.R")
rt<-reg_table(X,y,m.biv=do_biv,m.mul=do_mul,trans.var = trans_vars,sqrt.vars=sqrt_vars,inter.add=inter_reg)
rt<-rt|>mutate(across(matches('co|lo|hi|pv'),as.numeric))
rt[,grepl('co|lo|hi|pv',names(rt))] <- sapply( round( rt[,grepl('co|lo|hi|pv',names(rt))], 3 ),formatC, format='f', digits=3 )
bm_list[[i]] <- rt
names(bm_list)[i] <- outs[i]
}
} # Flagging factors and continous variables
#
# sel_f <- X |>
# sapply(is.factor)
# f.names <- colnames(X)[sel_f]
rt<-reg_table(X,y,m.biv=do_biv,m.mul=do_mul,inter.add=inter_reg,robust=robust_ci)
rt<-rt|>mutate(across(matches('co|lo|hi|pv'),as.numeric))
rt[,grepl('co|lo|hi|pv',names(rt))] <- sapply( round( rt[,grepl('co|lo|hi|pv',names(rt))], 3 ),formatC, format='f', digits=3 )
rt
})
names(bm_list) <- outs
## ============================================================================= ## =============================================================================
## Print ## Print
## ============================================================================= ## =============================================================================
@ -98,9 +61,7 @@ for (i in 1:length(outs)){
# File name depending onstratification, transformation and back transformation # File name depending onstratification, transformation and back transformation
if (print_tbl==TRUE){ if (print_tbl==TRUE){
fnm<-paste0("bm_16_tbl",lbl_x) fnm<-paste0("bm_16_tbl",lbl_x)
if (!is.null(strat_var)){fnm<-paste0(fnm,"_strat")} if (robust_ci==TRUE){fnm<-paste0(fnm,"_robust")}
if (trans_vars==TRUE){fnm<-paste0(fnm,"_trans")}
# if (trans_back==TRUE){fnm<-paste0(fnm,"_back")}
export<-data.frame() export<-data.frame()
for (i in 1:length(bm_list)){ for (i in 1:length(bm_list)){

View File

@ -1,33 +0,0 @@
"","name","pred","co","lo","hi","pv","co.p","lo.p","hi.p"
"1","mdi_1_enr","mdi_1_enr","mdi_1_enr","mdi_1_enr","mdi_1_enr","mdi_1_enr","mdi_1_enr","mdi_1_enr","mdi_1_enr"
"2","active_treat","active_treat.yes","0.234","-0.232","0.699","0.325","0.263","-0.207","1.013"
"3","pase_0","pase_0","-0.000","-0.002","0.000","0.266","-0.000","-0.002","0.000"
"4","female","female.yes","0.180","0.019","0.341","0.028","0.197","0.020","0.406"
"5","age","age","-0.006","-0.013","0.000","0.059","-0.006","-0.013","0.000"
"6","cohab","cohab.yes","0.039","-0.122","0.199","0.637","0.039","-0.115","0.220"
"7","ever_smoker","ever_smoker.yes","-0.131","-0.288","0.027","0.103","-0.123","-0.250","0.027"
"8","diabetes","diabetes.yes","0.218","-0.011","0.448","0.062","0.244","-0.011","0.565"
"9","hypertension","hypertension.yes","0.062","-0.091","0.214","0.428","0.064","-0.087","0.239"
"10","afli","afli.yes","-0.152","-0.353","0.050","0.140","-0.141","-0.298","0.051"
"11","ami","ami.yes","0.175","-0.105","0.456","0.220","0.192","-0.100","0.577"
"12","tci","tci.yes","0.075","-0.366","0.515","0.739","0.078","-0.306","0.674"
"13","pad","pad.yes","0.150","-0.237","0.537","0.447","0.162","-0.211","0.712"
"14","nihss_0","nihss_0","0.116","0.009","0.223","0.034","0.116","0.009","0.223"
"15","any_reperf","any_reperf.yes","-0.011","-0.172","0.151","0.896","-0.011","-0.158","0.163"
"16","active_treat*pase_0+","active_treat*pase_0+","-0.011","-0.049","0.027","0.570","-0.011","-0.049","0.027"
"17","mdi_6_newobs_enr","mdi_6_newobs_enr","mdi_6_newobs_enr","mdi_6_newobs_enr","mdi_6_newobs_enr","mdi_6_newobs_enr","mdi_6_newobs_enr","mdi_6_newobs_enr","mdi_6_newobs_enr"
"18","active_treat","active_treat.yes","-0.056","-0.624","0.511","0.845","-0.055","-0.464","0.667"
"19","pase_0","pase_0","-0.001","-0.004","0.000","0.060","-0.001","-0.004","0.000"
"20","female","female.yes","0.264","0.076","0.452","0.006","0.302","0.079","0.571"
"21","age","age","-0.007","-0.015","0.000","0.063","-0.007","-0.015","0.000"
"22","cohab","cohab.yes","-0.008","-0.198","0.182","0.933","-0.008","-0.179","0.199"
"23","ever_smoker","ever_smoker.yes","-0.001","-0.183","0.182","0.996","-0.001","-0.168","0.200"
"24","diabetes","diabetes.yes","-0.017","-0.299","0.265","0.906","-0.017","-0.259","0.304"
"25","hypertension","hypertension.yes","0.100","-0.079","0.278","0.273","0.105","-0.076","0.321"
"26","afli","afli.yes","-0.063","-0.301","0.175","0.604","-0.061","-0.260","0.191"
"27","ami","ami.yes","0.303","-0.032","0.638","0.076","0.354","-0.032","0.894"
"28","tci","tci.yes","-0.696","-1.211","-0.180","0.008","-0.501","-0.702","-0.164"
"29","pad","pad.yes","0.304","-0.155","0.763","0.194","0.355","-0.144","1.144"
"30","nihss_0","nihss_0","0.133","0.006","0.261","0.040","0.133","0.006","0.261"
"31","any_reperf","any_reperf.yes","-0.035","-0.223","0.153","0.718","-0.034","-0.200","0.166"
"32","active_treat*pase_0+","active_treat*pase_0+","-0.001","-0.047","0.045","0.965","-0.001","-0.047","0.045"
1 name pred co lo hi pv co.p lo.p hi.p
2 1 mdi_1_enr mdi_1_enr mdi_1_enr mdi_1_enr mdi_1_enr mdi_1_enr mdi_1_enr mdi_1_enr mdi_1_enr
3 2 active_treat active_treat.yes 0.234 -0.232 0.699 0.325 0.263 -0.207 1.013
4 3 pase_0 pase_0 -0.000 -0.002 0.000 0.266 -0.000 -0.002 0.000
5 4 female female.yes 0.180 0.019 0.341 0.028 0.197 0.020 0.406
6 5 age age -0.006 -0.013 0.000 0.059 -0.006 -0.013 0.000
7 6 cohab cohab.yes 0.039 -0.122 0.199 0.637 0.039 -0.115 0.220
8 7 ever_smoker ever_smoker.yes -0.131 -0.288 0.027 0.103 -0.123 -0.250 0.027
9 8 diabetes diabetes.yes 0.218 -0.011 0.448 0.062 0.244 -0.011 0.565
10 9 hypertension hypertension.yes 0.062 -0.091 0.214 0.428 0.064 -0.087 0.239
11 10 afli afli.yes -0.152 -0.353 0.050 0.140 -0.141 -0.298 0.051
12 11 ami ami.yes 0.175 -0.105 0.456 0.220 0.192 -0.100 0.577
13 12 tci tci.yes 0.075 -0.366 0.515 0.739 0.078 -0.306 0.674
14 13 pad pad.yes 0.150 -0.237 0.537 0.447 0.162 -0.211 0.712
15 14 nihss_0 nihss_0 0.116 0.009 0.223 0.034 0.116 0.009 0.223
16 15 any_reperf any_reperf.yes -0.011 -0.172 0.151 0.896 -0.011 -0.158 0.163
17 16 active_treat*pase_0+ active_treat*pase_0+ -0.011 -0.049 0.027 0.570 -0.011 -0.049 0.027
18 17 mdi_6_newobs_enr mdi_6_newobs_enr mdi_6_newobs_enr mdi_6_newobs_enr mdi_6_newobs_enr mdi_6_newobs_enr mdi_6_newobs_enr mdi_6_newobs_enr mdi_6_newobs_enr
19 18 active_treat active_treat.yes -0.056 -0.624 0.511 0.845 -0.055 -0.464 0.667
20 19 pase_0 pase_0 -0.001 -0.004 0.000 0.060 -0.001 -0.004 0.000
21 20 female female.yes 0.264 0.076 0.452 0.006 0.302 0.079 0.571
22 21 age age -0.007 -0.015 0.000 0.063 -0.007 -0.015 0.000
23 22 cohab cohab.yes -0.008 -0.198 0.182 0.933 -0.008 -0.179 0.199
24 23 ever_smoker ever_smoker.yes -0.001 -0.183 0.182 0.996 -0.001 -0.168 0.200
25 24 diabetes diabetes.yes -0.017 -0.299 0.265 0.906 -0.017 -0.259 0.304
26 25 hypertension hypertension.yes 0.100 -0.079 0.278 0.273 0.105 -0.076 0.321
27 26 afli afli.yes -0.063 -0.301 0.175 0.604 -0.061 -0.260 0.191
28 27 ami ami.yes 0.303 -0.032 0.638 0.076 0.354 -0.032 0.894
29 28 tci tci.yes -0.696 -1.211 -0.180 0.008 -0.501 -0.702 -0.164
30 29 pad pad.yes 0.304 -0.155 0.763 0.194 0.355 -0.144 1.144
31 30 nihss_0 nihss_0 0.133 0.006 0.261 0.040 0.133 0.006 0.261
32 31 any_reperf any_reperf.yes -0.035 -0.223 0.153 0.718 -0.034 -0.200 0.166
33 32 active_treat*pase_0+ active_treat*pase_0+ -0.001 -0.047 0.045 0.965 -0.001 -0.047 0.045

View File

@ -1,14 +0,0 @@
"","name","pred","co","lo","hi","pv","co.p","lo.p","hi.p"
"1","nihss_0","nihss_0","nihss_0","nihss_0","nihss_0","nihss_0","nihss_0","nihss_0","nihss_0"
"2","active_treat","active_treat.yes","0.002","-0.119","0.123","0.975","0.002","-0.112","0.130"
"3","pase_0","pase_0","-0.000","-0.001","0.000","0.067","-0.000","-0.001","0.000"
"4","female","female.yes","0.086","-0.050","0.222","0.213","0.090","-0.049","0.249"
"5","age","age","0.004","-0.001","0.010","0.127","0.004","-0.001","0.010"
"6","cohab","cohab.yes","0.085","-0.049","0.220","0.215","0.089","-0.048","0.246"
"7","ever_smoker","ever_smoker.yes","0.008","-0.124","0.140","0.908","0.008","-0.117","0.150"
"8","diabetes","diabetes.yes","-0.000","-0.192","0.192","0.999","-0.000","-0.174","0.211"
"9","hypertension","hypertension.yes","-0.149","-0.275","-0.022","0.021","-0.138","-0.240","-0.022"
"10","afli","afli.yes","0.229","0.063","0.395","0.007","0.258","0.065","0.485"
"11","ami","ami.yes","0.034","-0.195","0.263","0.771","0.035","-0.177","0.301"
"12","tci","tci.yes","-0.170","-0.535","0.195","0.361","-0.156","-0.414","0.216"
"13","pad","pad.yes","-0.273","-0.608","0.062","0.110","-0.239","-0.455","0.063"
1 name pred co lo hi pv co.p lo.p hi.p
2 1 nihss_0 nihss_0 nihss_0 nihss_0 nihss_0 nihss_0 nihss_0 nihss_0 nihss_0
3 2 active_treat active_treat.yes 0.002 -0.119 0.123 0.975 0.002 -0.112 0.130
4 3 pase_0 pase_0 -0.000 -0.001 0.000 0.067 -0.000 -0.001 0.000
5 4 female female.yes 0.086 -0.050 0.222 0.213 0.090 -0.049 0.249
6 5 age age 0.004 -0.001 0.010 0.127 0.004 -0.001 0.010
7 6 cohab cohab.yes 0.085 -0.049 0.220 0.215 0.089 -0.048 0.246
8 7 ever_smoker ever_smoker.yes 0.008 -0.124 0.140 0.908 0.008 -0.117 0.150
9 8 diabetes diabetes.yes -0.000 -0.192 0.192 0.999 -0.000 -0.174 0.211
10 9 hypertension hypertension.yes -0.149 -0.275 -0.022 0.021 -0.138 -0.240 -0.022
11 10 afli afli.yes 0.229 0.063 0.395 0.007 0.258 0.065 0.485
12 11 ami ami.yes 0.034 -0.195 0.263 0.771 0.035 -0.177 0.301
13 12 tci tci.yes -0.170 -0.535 0.195 0.361 -0.156 -0.414 0.216
14 13 pad pad.yes -0.273 -0.608 0.062 0.110 -0.239 -0.455 0.063

View File

@ -1,29 +0,0 @@
"","names(strat_list)[1]","name","pred","biv_co","biv_lo","biv_hi","biv_pv","biv_co.p","biv_lo.p","biv_hi.p","mul_co","mul_lo","mul_hi","mul_pv","mul_co.p","mul_lo.p","mul_hi.p","names(strat_list)[2]","name","pred","biv_co","biv_lo","biv_hi","biv_pv","biv_co.p","biv_lo.p","biv_hi.p","mul_co","mul_lo","mul_hi","mul_pv","mul_co.p","mul_lo.p","mul_hi.p"
"1","mdi_1_enr","mdi_1_enr","mdi_1_enr","mdi_1_enr","mdi_1_enr","mdi_1_enr","mdi_1_enr","mdi_1_enr","mdi_1_enr","mdi_1_enr","mdi_1_enr","mdi_1_enr","mdi_1_enr","mdi_1_enr","mdi_1_enr","mdi_1_enr","mdi_1_enr","mdi_1_enr","mdi_1_enr","mdi_1_enr","mdi_1_enr","mdi_1_enr","mdi_1_enr","mdi_1_enr","mdi_1_enr","mdi_1_enr","mdi_1_enr","mdi_1_enr","mdi_1_enr","mdi_1_enr","mdi_1_enr","mdi_1_enr","mdi_1_enr","mdi_1_enr"
"2","no","pase_0","pase_0","-0.000","-0.002","0.000","0.226","-0.000","-0.002","0.000","-0.000","-0.002","0.000","0.364","-0.000","-0.002","0.000","yes","pase_0","pase_0","-0.000","-0.002","0.000","0.226","-0.000","-0.002","0.000","-0.000","-0.002","0.000","0.364","-0.000","-0.002","0.000"
"3","no","female","female.yes","-0.032","-0.245","0.180","0.765","-0.032","-0.217","0.198","0.025","-0.204","0.255","0.830","0.025","-0.185","0.290","yes","female","female.yes","-0.032","-0.245","0.180","0.765","-0.032","-0.217","0.198","0.025","-0.204","0.255","0.830","0.025","-0.185","0.290"
"4","no","age","age","0.001","-0.007","0.009","0.847","0.001","-0.007","0.009","-0.001","-0.010","0.008","0.768","-0.001","-0.010","0.008","yes","age","age","0.001","-0.007","0.009","0.847","0.001","-0.007","0.009","-0.001","-0.010","0.008","0.768","-0.001","-0.010","0.008"
"5","no","cohab","cohab.yes","-0.028","-0.235","0.180","0.792","-0.027","-0.210","0.197","0.039","-0.188","0.266","0.736","0.040","-0.171","0.304","yes","cohab","cohab.yes","-0.028","-0.235","0.180","0.792","-0.027","-0.210","0.197","0.039","-0.188","0.266","0.736","0.040","-0.171","0.304"
"6","no","ever_smoker","ever_smoker.yes","-0.115","-0.333","0.103","0.301","-0.109","-0.283","0.109","-0.114","-0.341","0.113","0.323","-0.108","-0.289","0.119","yes","ever_smoker","ever_smoker.yes","-0.115","-0.333","0.103","0.301","-0.109","-0.283","0.109","-0.114","-0.341","0.113","0.323","-0.108","-0.289","0.119"
"7","no","diabetes","diabetes.yes","0.125","-0.162","0.412","0.392","0.133","-0.149","0.509","0.176","-0.130","0.482","0.259","0.192","-0.122","0.619","yes","diabetes","diabetes.yes","0.125","-0.162","0.412","0.392","0.133","-0.149","0.509","0.176","-0.130","0.482","0.259","0.192","-0.122","0.619"
"8","no","hypertension","hypertension.yes","0.064","-0.134","0.262","0.525","0.066","-0.126","0.300","-0.054","-0.272","0.164","0.625","-0.053","-0.238","0.178","yes","hypertension","hypertension.yes","0.064","-0.134","0.262","0.525","0.066","-0.126","0.300","-0.054","-0.272","0.164","0.625","-0.053","-0.238","0.178"
"9","no","afli","afli.yes","-0.061","-0.337","0.216","0.665","-0.059","-0.286","0.241","-0.126","-0.418","0.167","0.397","-0.118","-0.342","0.181","yes","afli","afli.yes","-0.061","-0.337","0.216","0.665","-0.059","-0.286","0.241","-0.126","-0.418","0.167","0.397","-0.118","-0.342","0.181"
"10","no","ami","ami.yes","0.230","-0.116","0.575","0.192","0.258","-0.110","0.778","0.348","-0.044","0.741","0.082","0.416","-0.043","1.097","yes","ami","ami.yes","0.230","-0.116","0.575","0.192","0.258","-0.110","0.778","0.348","-0.044","0.741","0.082","0.416","-0.043","1.097"
"11","no","tci","tci.yes","-0.371","-1.065","0.324","0.295","-0.310","-0.655","0.383","-0.356","-1.044","0.332","0.309","-0.300","-0.648","0.393","yes","tci","tci.yes","-0.371","-1.065","0.324","0.295","-0.310","-0.655","0.383","-0.356","-1.044","0.332","0.309","-0.300","-0.648","0.393"
"12","no","pad","pad.yes","0.321","-0.111","0.752","0.145","0.378","-0.105","1.122","0.287","-0.195","0.770","0.241","0.333","-0.177","1.159","yes","pad","pad.yes","0.321","-0.111","0.752","0.145","0.378","-0.105","1.122","0.287","-0.195","0.770","0.241","0.333","-0.177","1.159"
"13","no","nihss_0","nihss_0","0.153","0.010","0.297","0.036","0.153","0.010","0.297","0.238","0.083","0.393","0.003","0.238","0.083","0.393","yes","nihss_0","nihss_0","0.153","0.010","0.297","0.036","0.153","0.010","0.297","0.238","0.083","0.393","0.003","0.238","0.083","0.393"
"14","no","any_reperf","any_reperf.yes","-0.087","-0.289","0.114","0.396","-0.083","-0.251","0.121","-0.194","-0.417","0.029","0.089","-0.176","-0.341","0.030","yes","any_reperf","any_reperf.yes","-0.087","-0.289","0.114","0.396","-0.083","-0.251","0.121","-0.194","-0.417","0.029","0.089","-0.176","-0.341","0.030"
"15","mdi_6_newobs_enr","mdi_6_newobs_enr","mdi_6_newobs_enr","mdi_6_newobs_enr","mdi_6_newobs_enr","mdi_6_newobs_enr","mdi_6_newobs_enr","mdi_6_newobs_enr","mdi_6_newobs_enr","mdi_6_newobs_enr","mdi_6_newobs_enr","mdi_6_newobs_enr","mdi_6_newobs_enr","mdi_6_newobs_enr","mdi_6_newobs_enr","mdi_6_newobs_enr","mdi_6_newobs_enr","mdi_6_newobs_enr","mdi_6_newobs_enr","mdi_6_newobs_enr","mdi_6_newobs_enr","mdi_6_newobs_enr","mdi_6_newobs_enr","mdi_6_newobs_enr","mdi_6_newobs_enr","mdi_6_newobs_enr","mdi_6_newobs_enr","mdi_6_newobs_enr","mdi_6_newobs_enr","mdi_6_newobs_enr","mdi_6_newobs_enr","mdi_6_newobs_enr","mdi_6_newobs_enr","mdi_6_newobs_enr"
"16","no","pase_0","pase_0","-0.002","-0.006","-0.000","0.007","-0.002","-0.006","-0.000","-0.002","-0.006","0.000","0.059","-0.002","-0.006","0.000","yes","pase_0","pase_0","-0.002","-0.006","-0.000","0.007","-0.002","-0.006","-0.000","-0.002","-0.006","0.000","0.059","-0.002","-0.006","0.000"
"17","no","female","female.yes","0.305","0.061","0.549","0.015","0.356","0.063","0.731","0.274","0.002","0.546","0.048","0.315","0.002","0.726","yes","female","female.yes","0.305","0.061","0.549","0.015","0.356","0.063","0.731","0.274","0.002","0.546","0.048","0.315","0.002","0.726"
"18","no","age","age","0.000","-0.009","0.009","0.977","0.000","-0.009","0.009","-0.008","-0.019","0.003","0.134","-0.008","-0.019","0.003","yes","age","age","0.000","-0.009","0.009","0.977","0.000","-0.009","0.009","-0.008","-0.019","0.003","0.134","-0.008","-0.019","0.003"
"19","no","cohab","cohab.yes","-0.067","-0.325","0.190","0.607","-0.065","-0.277","0.209","-0.102","-0.381","0.178","0.475","-0.097","-0.317","0.195","yes","cohab","cohab.yes","-0.067","-0.325","0.190","0.607","-0.065","-0.277","0.209","-0.102","-0.381","0.178","0.475","-0.097","-0.317","0.195"
"20","no","ever_smoker","ever_smoker.yes","0.103","-0.145","0.351","0.413","0.109","-0.135","0.420","0.098","-0.163","0.359","0.460","0.103","-0.150","0.432","yes","ever_smoker","ever_smoker.yes","0.103","-0.145","0.351","0.413","0.109","-0.135","0.420","0.098","-0.163","0.359","0.460","0.103","-0.150","0.432"
"21","no","diabetes","diabetes.yes","0.080","-0.339","0.498","0.709","0.083","-0.287","0.645","0.079","-0.343","0.500","0.713","0.082","-0.290","0.649","yes","diabetes","diabetes.yes","0.080","-0.339","0.498","0.709","0.083","-0.287","0.645","0.079","-0.343","0.500","0.713","0.082","-0.290","0.649"
"22","no","hypertension","hypertension.yes","0.285","0.047","0.523","0.019","0.330","0.049","0.686","0.158","-0.103","0.419","0.235","0.171","-0.098","0.520","yes","hypertension","hypertension.yes","0.285","0.047","0.523","0.019","0.330","0.049","0.686","0.158","-0.103","0.419","0.235","0.171","-0.098","0.520"
"23","no","afli","afli.yes","-0.079","-0.404","0.245","0.631","-0.076","-0.332","0.278","-0.076","-0.411","0.259","0.655","-0.073","-0.337","0.296","yes","afli","afli.yes","-0.079","-0.404","0.245","0.631","-0.076","-0.332","0.278","-0.076","-0.411","0.259","0.655","-0.073","-0.337","0.296"
"24","no","ami","ami.yes","0.203","-0.254","0.661","0.382","0.225","-0.225","0.936","0.178","-0.326","0.682","0.488","0.195","-0.278","0.977","yes","ami","ami.yes","0.203","-0.254","0.661","0.382","0.225","-0.225","0.936","0.178","-0.326","0.682","0.488","0.195","-0.278","0.977"
"25","no","tci","tci.yes","-0.718","-1.431","-0.005","0.049","-0.512","-0.761","-0.005","-0.806","-1.521","-0.092","0.027","-0.553","-0.781","-0.088","yes","tci","tci.yes","-0.718","-1.431","-0.005","0.049","-0.512","-0.761","-0.005","-0.806","-1.521","-0.092","0.027","-0.553","-0.781","-0.088"
"26","no","pad","pad.yes","0.339","-0.439","1.118","0.391","0.404","-0.355","2.058","0.293","-0.575","1.161","0.507","0.340","-0.437","2.194","yes","pad","pad.yes","0.339","-0.439","1.118","0.391","0.404","-0.355","2.058","0.293","-0.575","1.161","0.507","0.340","-0.437","2.194"
"27","no","nihss_0","nihss_0","0.028","-0.136","0.193","0.734","0.028","-0.136","0.193","-0.056","-0.239","0.126","0.544","-0.056","-0.239","0.126","yes","nihss_0","nihss_0","0.028","-0.136","0.193","0.734","0.028","-0.136","0.193","-0.056","-0.239","0.126","0.544","-0.056","-0.239","0.126"
"28","no","any_reperf","any_reperf.yes","0.037","-0.211","0.285","0.768","0.038","-0.190","0.330","0.183","-0.097","0.462","0.199","0.201","-0.092","0.588","yes","any_reperf","any_reperf.yes","0.037","-0.211","0.285","0.768","0.038","-0.190","0.330","0.183","-0.097","0.462","0.199","0.201","-0.092","0.588"
1 names(strat_list)[1] name pred biv_co biv_lo biv_hi biv_pv biv_co.p biv_lo.p biv_hi.p mul_co mul_lo mul_hi mul_pv mul_co.p mul_lo.p mul_hi.p names(strat_list)[2] name pred biv_co biv_lo biv_hi biv_pv biv_co.p biv_lo.p biv_hi.p mul_co mul_lo mul_hi mul_pv mul_co.p mul_lo.p mul_hi.p
2 1 mdi_1_enr mdi_1_enr mdi_1_enr mdi_1_enr mdi_1_enr mdi_1_enr mdi_1_enr mdi_1_enr mdi_1_enr mdi_1_enr mdi_1_enr mdi_1_enr mdi_1_enr mdi_1_enr mdi_1_enr mdi_1_enr mdi_1_enr mdi_1_enr mdi_1_enr mdi_1_enr mdi_1_enr mdi_1_enr mdi_1_enr mdi_1_enr mdi_1_enr mdi_1_enr mdi_1_enr mdi_1_enr mdi_1_enr mdi_1_enr mdi_1_enr mdi_1_enr mdi_1_enr mdi_1_enr
3 2 no pase_0 pase_0 -0.000 -0.002 0.000 0.226 -0.000 -0.002 0.000 -0.000 -0.002 0.000 0.364 -0.000 -0.002 0.000 yes pase_0 pase_0 -0.000 -0.002 0.000 0.226 -0.000 -0.002 0.000 -0.000 -0.002 0.000 0.364 -0.000 -0.002 0.000
4 3 no female female.yes -0.032 -0.245 0.180 0.765 -0.032 -0.217 0.198 0.025 -0.204 0.255 0.830 0.025 -0.185 0.290 yes female female.yes -0.032 -0.245 0.180 0.765 -0.032 -0.217 0.198 0.025 -0.204 0.255 0.830 0.025 -0.185 0.290
5 4 no age age 0.001 -0.007 0.009 0.847 0.001 -0.007 0.009 -0.001 -0.010 0.008 0.768 -0.001 -0.010 0.008 yes age age 0.001 -0.007 0.009 0.847 0.001 -0.007 0.009 -0.001 -0.010 0.008 0.768 -0.001 -0.010 0.008
6 5 no cohab cohab.yes -0.028 -0.235 0.180 0.792 -0.027 -0.210 0.197 0.039 -0.188 0.266 0.736 0.040 -0.171 0.304 yes cohab cohab.yes -0.028 -0.235 0.180 0.792 -0.027 -0.210 0.197 0.039 -0.188 0.266 0.736 0.040 -0.171 0.304
7 6 no ever_smoker ever_smoker.yes -0.115 -0.333 0.103 0.301 -0.109 -0.283 0.109 -0.114 -0.341 0.113 0.323 -0.108 -0.289 0.119 yes ever_smoker ever_smoker.yes -0.115 -0.333 0.103 0.301 -0.109 -0.283 0.109 -0.114 -0.341 0.113 0.323 -0.108 -0.289 0.119
8 7 no diabetes diabetes.yes 0.125 -0.162 0.412 0.392 0.133 -0.149 0.509 0.176 -0.130 0.482 0.259 0.192 -0.122 0.619 yes diabetes diabetes.yes 0.125 -0.162 0.412 0.392 0.133 -0.149 0.509 0.176 -0.130 0.482 0.259 0.192 -0.122 0.619
9 8 no hypertension hypertension.yes 0.064 -0.134 0.262 0.525 0.066 -0.126 0.300 -0.054 -0.272 0.164 0.625 -0.053 -0.238 0.178 yes hypertension hypertension.yes 0.064 -0.134 0.262 0.525 0.066 -0.126 0.300 -0.054 -0.272 0.164 0.625 -0.053 -0.238 0.178
10 9 no afli afli.yes -0.061 -0.337 0.216 0.665 -0.059 -0.286 0.241 -0.126 -0.418 0.167 0.397 -0.118 -0.342 0.181 yes afli afli.yes -0.061 -0.337 0.216 0.665 -0.059 -0.286 0.241 -0.126 -0.418 0.167 0.397 -0.118 -0.342 0.181
11 10 no ami ami.yes 0.230 -0.116 0.575 0.192 0.258 -0.110 0.778 0.348 -0.044 0.741 0.082 0.416 -0.043 1.097 yes ami ami.yes 0.230 -0.116 0.575 0.192 0.258 -0.110 0.778 0.348 -0.044 0.741 0.082 0.416 -0.043 1.097
12 11 no tci tci.yes -0.371 -1.065 0.324 0.295 -0.310 -0.655 0.383 -0.356 -1.044 0.332 0.309 -0.300 -0.648 0.393 yes tci tci.yes -0.371 -1.065 0.324 0.295 -0.310 -0.655 0.383 -0.356 -1.044 0.332 0.309 -0.300 -0.648 0.393
13 12 no pad pad.yes 0.321 -0.111 0.752 0.145 0.378 -0.105 1.122 0.287 -0.195 0.770 0.241 0.333 -0.177 1.159 yes pad pad.yes 0.321 -0.111 0.752 0.145 0.378 -0.105 1.122 0.287 -0.195 0.770 0.241 0.333 -0.177 1.159
14 13 no nihss_0 nihss_0 0.153 0.010 0.297 0.036 0.153 0.010 0.297 0.238 0.083 0.393 0.003 0.238 0.083 0.393 yes nihss_0 nihss_0 0.153 0.010 0.297 0.036 0.153 0.010 0.297 0.238 0.083 0.393 0.003 0.238 0.083 0.393
15 14 no any_reperf any_reperf.yes -0.087 -0.289 0.114 0.396 -0.083 -0.251 0.121 -0.194 -0.417 0.029 0.089 -0.176 -0.341 0.030 yes any_reperf any_reperf.yes -0.087 -0.289 0.114 0.396 -0.083 -0.251 0.121 -0.194 -0.417 0.029 0.089 -0.176 -0.341 0.030
16 15 mdi_6_newobs_enr mdi_6_newobs_enr mdi_6_newobs_enr mdi_6_newobs_enr mdi_6_newobs_enr mdi_6_newobs_enr mdi_6_newobs_enr mdi_6_newobs_enr mdi_6_newobs_enr mdi_6_newobs_enr mdi_6_newobs_enr mdi_6_newobs_enr mdi_6_newobs_enr mdi_6_newobs_enr mdi_6_newobs_enr mdi_6_newobs_enr mdi_6_newobs_enr mdi_6_newobs_enr mdi_6_newobs_enr mdi_6_newobs_enr mdi_6_newobs_enr mdi_6_newobs_enr mdi_6_newobs_enr mdi_6_newobs_enr mdi_6_newobs_enr mdi_6_newobs_enr mdi_6_newobs_enr mdi_6_newobs_enr mdi_6_newobs_enr mdi_6_newobs_enr mdi_6_newobs_enr mdi_6_newobs_enr mdi_6_newobs_enr mdi_6_newobs_enr
17 16 no pase_0 pase_0 -0.002 -0.006 -0.000 0.007 -0.002 -0.006 -0.000 -0.002 -0.006 0.000 0.059 -0.002 -0.006 0.000 yes pase_0 pase_0 -0.002 -0.006 -0.000 0.007 -0.002 -0.006 -0.000 -0.002 -0.006 0.000 0.059 -0.002 -0.006 0.000
18 17 no female female.yes 0.305 0.061 0.549 0.015 0.356 0.063 0.731 0.274 0.002 0.546 0.048 0.315 0.002 0.726 yes female female.yes 0.305 0.061 0.549 0.015 0.356 0.063 0.731 0.274 0.002 0.546 0.048 0.315 0.002 0.726
19 18 no age age 0.000 -0.009 0.009 0.977 0.000 -0.009 0.009 -0.008 -0.019 0.003 0.134 -0.008 -0.019 0.003 yes age age 0.000 -0.009 0.009 0.977 0.000 -0.009 0.009 -0.008 -0.019 0.003 0.134 -0.008 -0.019 0.003
20 19 no cohab cohab.yes -0.067 -0.325 0.190 0.607 -0.065 -0.277 0.209 -0.102 -0.381 0.178 0.475 -0.097 -0.317 0.195 yes cohab cohab.yes -0.067 -0.325 0.190 0.607 -0.065 -0.277 0.209 -0.102 -0.381 0.178 0.475 -0.097 -0.317 0.195
21 20 no ever_smoker ever_smoker.yes 0.103 -0.145 0.351 0.413 0.109 -0.135 0.420 0.098 -0.163 0.359 0.460 0.103 -0.150 0.432 yes ever_smoker ever_smoker.yes 0.103 -0.145 0.351 0.413 0.109 -0.135 0.420 0.098 -0.163 0.359 0.460 0.103 -0.150 0.432
22 21 no diabetes diabetes.yes 0.080 -0.339 0.498 0.709 0.083 -0.287 0.645 0.079 -0.343 0.500 0.713 0.082 -0.290 0.649 yes diabetes diabetes.yes 0.080 -0.339 0.498 0.709 0.083 -0.287 0.645 0.079 -0.343 0.500 0.713 0.082 -0.290 0.649
23 22 no hypertension hypertension.yes 0.285 0.047 0.523 0.019 0.330 0.049 0.686 0.158 -0.103 0.419 0.235 0.171 -0.098 0.520 yes hypertension hypertension.yes 0.285 0.047 0.523 0.019 0.330 0.049 0.686 0.158 -0.103 0.419 0.235 0.171 -0.098 0.520
24 23 no afli afli.yes -0.079 -0.404 0.245 0.631 -0.076 -0.332 0.278 -0.076 -0.411 0.259 0.655 -0.073 -0.337 0.296 yes afli afli.yes -0.079 -0.404 0.245 0.631 -0.076 -0.332 0.278 -0.076 -0.411 0.259 0.655 -0.073 -0.337 0.296
25 24 no ami ami.yes 0.203 -0.254 0.661 0.382 0.225 -0.225 0.936 0.178 -0.326 0.682 0.488 0.195 -0.278 0.977 yes ami ami.yes 0.203 -0.254 0.661 0.382 0.225 -0.225 0.936 0.178 -0.326 0.682 0.488 0.195 -0.278 0.977
26 25 no tci tci.yes -0.718 -1.431 -0.005 0.049 -0.512 -0.761 -0.005 -0.806 -1.521 -0.092 0.027 -0.553 -0.781 -0.088 yes tci tci.yes -0.718 -1.431 -0.005 0.049 -0.512 -0.761 -0.005 -0.806 -1.521 -0.092 0.027 -0.553 -0.781 -0.088
27 26 no pad pad.yes 0.339 -0.439 1.118 0.391 0.404 -0.355 2.058 0.293 -0.575 1.161 0.507 0.340 -0.437 2.194 yes pad pad.yes 0.339 -0.439 1.118 0.391 0.404 -0.355 2.058 0.293 -0.575 1.161 0.507 0.340 -0.437 2.194
28 27 no nihss_0 nihss_0 0.028 -0.136 0.193 0.734 0.028 -0.136 0.193 -0.056 -0.239 0.126 0.544 -0.056 -0.239 0.126 yes nihss_0 nihss_0 0.028 -0.136 0.193 0.734 0.028 -0.136 0.193 -0.056 -0.239 0.126 0.544 -0.056 -0.239 0.126
29 28 no any_reperf any_reperf.yes 0.037 -0.211 0.285 0.768 0.038 -0.190 0.330 0.183 -0.097 0.462 0.199 0.201 -0.092 0.588 yes any_reperf any_reperf.yes 0.037 -0.211 0.285 0.768 0.038 -0.190 0.330 0.183 -0.097 0.462 0.199 0.201 -0.092 0.588

View File

@ -1,31 +1,33 @@
"","name","pred","biv_co","biv_lo","biv_hi","biv_pv","biv_co.p","biv_lo.p","biv_hi.p","mul_co","mul_lo","mul_hi","mul_pv","mul_co.p","mul_lo.p","mul_hi.p" "","name","co.x","biv_lo","biv_hi","biv_pv","co.y","mul_lo","mul_hi","mul_pv"
"1","mdi_1_enr","mdi_1_enr","mdi_1_enr","mdi_1_enr","mdi_1_enr","mdi_1_enr","mdi_1_enr","mdi_1_enr","mdi_1_enr","mdi_1_enr","mdi_1_enr","mdi_1_enr","mdi_1_enr","mdi_1_enr","mdi_1_enr","mdi_1_enr" "1","mdi_1_enr","mdi_1_enr","mdi_1_enr","mdi_1_enr","mdi_1_enr","mdi_1_enr","mdi_1_enr","mdi_1_enr","mdi_1_enr"
"2","active_treat","active_treat.yes","0.053","-0.090","0.196","0.464","0.055","-0.086","0.217","0.105","-0.039","0.250","0.151","0.111","-0.038","0.284" "2","pase_0_qq_2","-0.589","-2.679","1.500","0.580","-0.036","-2.199","2.127","0.974"
"3","pase_0","pase_0","-0.001","-0.002","-0.000","0.006","-0.001","-0.002","-0.000","-0.000","-0.002","0.000","0.059","-0.000","-0.002","0.000" "3","pase_0_qq_3","-2.279","-4.151","-0.406","0.017","-2.361","-4.189","-0.532","0.011"
"4","female","female.yes","0.145","-0.005","0.295","0.058","0.156","-0.005","0.343","0.183","0.023","0.344","0.025","0.201","0.023","0.410" "4","pase_0_qq_4","-3.019","-4.683","-1.355","0.000","-2.382","-4.285","-0.480","0.014"
"5","age","age","-0.001","-0.007","0.004","0.688","-0.001","-0.007","0.004","-0.006","-0.012","0.000","0.060","-0.006","-0.012","0.000" "5","femaleyes","1.392","-0.017","2.801","0.053","1.680","0.211","3.150","0.025"
"6","cohab","cohab.yes","0.019","-0.132","0.169","0.807","0.019","-0.123","0.184","0.040","-0.120","0.201","0.620","0.041","-0.113","0.222" "6","age","0.003","-0.050","0.056","0.903","-0.059","-0.119","0.001","0.055"
"7","ever_smoker","ever_smoker.yes","-0.088","-0.240","0.064","0.256","-0.084","-0.214","0.066","-0.134","-0.291","0.023","0.095","-0.125","-0.252","0.023" "7","cohabyes","-0.001","-1.393","1.390","0.998","0.415","-1.044","1.874","0.576"
"8","diabetes","diabetes.yes","0.159","-0.065","0.383","0.163","0.172","-0.063","0.466","0.217","-0.013","0.446","0.064","0.242","-0.012","0.563" "8","ever_smokeryes","-0.904","-2.286","0.479","0.200","-0.798","-2.129","0.534","0.240"
"9","hypertension","hypertension.yes","0.138","-0.004","0.281","0.058","0.148","-0.004","0.324","0.061","-0.091","0.214","0.430","0.063","-0.087","0.238" "9","diabetesyes","0.949","-1.098","2.996","0.363","0.959","-1.041","2.960","0.347"
"10","afli","afli.yes","-0.146","-0.342","0.050","0.143","-0.136","-0.290","0.051","-0.149","-0.351","0.052","0.146","-0.139","-0.296","0.053" "10","hypertensionyes","1.395","0.089","2.702","0.036","0.636","-0.677","1.948","0.342"
"11","ami","ami.yes","0.147","-0.112","0.405","0.266","0.158","-0.106","0.499","0.177","-0.103","0.457","0.216","0.194","-0.098","0.580" "11","afliyes","-1.047","-2.746","0.652","0.227","-1.185","-2.807","0.438","0.152"
"12","tci","tci.yes","0.138","-0.316","0.591","0.550","0.148","-0.271","0.807","0.078","-0.362","0.518","0.729","0.081","-0.304","0.678" "12","amiyes","2.527","-0.491","5.545","0.101","2.150","-0.941","5.240","0.172"
"13","pad","pad.yes","0.139","-0.219","0.497","0.447","0.149","-0.197","0.643","0.150","-0.237","0.537","0.446","0.162","-0.211","0.711" "13","tciyes","2.151","-4.206","8.508","0.507","2.137","-4.254","8.528","0.512"
"14","nihss_0","nihss_0","0.106","0.007","0.204","0.036","0.106","0.007","0.204","0.117","0.010","0.224","0.032","0.117","0.010","0.224" "14","padyes","3.275","-1.509","8.058","0.179","4.002","-1.489","9.493","0.153"
"15","any_reperf","any_reperf.yes","0.021","-0.127","0.168","0.785","0.021","-0.119","0.183","-0.013","-0.174","0.149","0.879","-0.012","-0.160","0.160" "15","nihss_0","0.176","0.032","0.320","0.017","0.182","0.032","0.332","0.018"
"16","mdi_6_newobs_enr","mdi_6_newobs_enr","mdi_6_newobs_enr","mdi_6_newobs_enr","mdi_6_newobs_enr","mdi_6_newobs_enr","mdi_6_newobs_enr","mdi_6_newobs_enr","mdi_6_newobs_enr","mdi_6_newobs_enr","mdi_6_newobs_enr","mdi_6_newobs_enr","mdi_6_newobs_enr","mdi_6_newobs_enr","mdi_6_newobs_enr","mdi_6_newobs_enr" "16","any_reperfyes","0.151","-1.191","1.493","0.825","-0.236","-1.643","1.171","0.742"
"17","active_treat","active_treat.yes","-0.084","-0.249","0.081","0.316","-0.081","-0.220","0.084","-0.068","-0.237","0.100","0.426","-0.066","-0.211","0.105" "17","mdi_6_newobs_enr","mdi_6_newobs_enr","mdi_6_newobs_enr","mdi_6_newobs_enr","mdi_6_newobs_enr","mdi_6_newobs_enr","mdi_6_newobs_enr","mdi_6_newobs_enr","mdi_6_newobs_enr"
"18","pase_0","pase_0","-0.001","-0.003","-0.000","0.002","-0.001","-0.003","-0.000","-0.001","-0.003","-0.000","0.017","-0.001","-0.003","-0.000" "18","pase_0_qq_2","-1.939","-4.202","0.325","0.093","-1.469","-3.817","0.880","0.220"
"19","female","female.yes","0.246","0.074","0.418","0.005","0.279","0.077","0.519","0.264","0.077","0.451","0.006","0.302","0.080","0.570" "19","pase_0_qq_3","-3.334","-5.389","-1.279","0.002","-3.346","-5.484","-1.207","0.002"
"20","age","age","0.001","-0.005","0.008","0.658","0.001","-0.005","0.008","-0.007","-0.015","0.000","0.062","-0.007","-0.015","0.000" "20","pase_0_qq_4","-3.218","-5.354","-1.083","0.003","-2.767","-5.190","-0.344","0.025"
"21","cohab","cohab.yes","-0.094","-0.269","0.080","0.290","-0.090","-0.236","0.084","-0.008","-0.197","0.181","0.935","-0.008","-0.179","0.199" "21","femaleyes","2.350","0.768","3.932","0.004","2.266","0.547","3.986","0.010"
"22","ever_smoker","ever_smoker.yes","-0.021","-0.197","0.155","0.817","-0.020","-0.178","0.168","-0.001","-0.183","0.182","0.994","-0.001","-0.167","0.199" "22","age","0.009","-0.054","0.072","0.779","-0.054","-0.122","0.013","0.115"
"23","diabetes","diabetes.yes","0.012","-0.260","0.284","0.932","0.012","-0.229","0.329","-0.017","-0.299","0.265","0.905","-0.017","-0.259","0.303" "23","cohabyes","-1.162","-2.738","0.414","0.148","-0.409","-2.032","1.213","0.620"
"24","hypertension","hypertension.yes","0.232","0.068","0.396","0.006","0.261","0.070","0.487","0.100","-0.078","0.278","0.272","0.105","-0.075","0.321" "24","ever_smokeryes","0.011","-1.502","1.525","0.988","0.241","-1.259","1.741","0.753"
"25","afli","afli.yes","-0.025","-0.255","0.206","0.835","-0.024","-0.225","0.229","-0.063","-0.300","0.175","0.605","-0.061","-0.259","0.191" "25","diabetesyes","-0.343","-2.379","1.694","0.741","-0.544","-2.598","1.511","0.603"
"26","ami","ami.yes","0.200","-0.103","0.502","0.195","0.221","-0.098","0.652","0.303","-0.031","0.638","0.076","0.354","-0.031","0.893" "26","hypertensionyes","1.357","-0.047","2.761","0.058","0.592","-0.914","2.099","0.440"
"27","tci","tci.yes","-0.660","-1.180","-0.140","0.013","-0.483","-0.693","-0.130","-0.695","-1.210","-0.180","0.008","-0.501","-0.702","-0.165" "27","afliyes","-0.092","-2.074","1.889","0.927","-0.682","-2.616","1.252","0.488"
"28","pad","pad.yes","0.416","0.001","0.831","0.050","0.516","0.001","1.296","0.304","-0.155","0.762","0.194","0.355","-0.143","1.143" "28","amiyes","1.483","-1.174","4.141","0.273","2.282","-0.716","5.279","0.135"
"29","nihss_0","nihss_0","0.142","0.024","0.260","0.018","0.142","0.024","0.260","0.134","0.007","0.260","0.039","0.134","0.007","0.260" "29","tciyes","-4.472","-6.447","-2.498","0.000","-4.458","-6.453","-2.462","0.000"
"30","any_reperf","any_reperf.yes","-0.028","-0.198","0.142","0.749","-0.027","-0.179","0.153","-0.035","-0.222","0.153","0.715","-0.034","-0.199","0.165" "30","padyes","2.129","-1.510","5.769","0.251","1.461","-2.690","5.611","0.490"
"31","nihss_0","0.225","0.045","0.404","0.014","0.208","0.009","0.407","0.040"
"32","any_reperfyes","-0.036","-1.480","1.409","0.961","-0.369","-1.839","1.101","0.622"

1 name pred co.x biv_co biv_lo biv_hi biv_pv co.y biv_co.p mul_lo biv_lo.p mul_hi biv_hi.p mul_pv mul_co mul_co.p mul_lo.p mul_hi.p
2 1 mdi_1_enr mdi_1_enr mdi_1_enr mdi_1_enr mdi_1_enr mdi_1_enr mdi_1_enr mdi_1_enr mdi_1_enr mdi_1_enr mdi_1_enr mdi_1_enr mdi_1_enr mdi_1_enr mdi_1_enr mdi_1_enr mdi_1_enr mdi_1_enr
3 2 active_treat pase_0_qq_2 active_treat.yes -0.589 0.053 -0.090 -2.679 0.196 1.500 0.464 0.580 -0.036 0.055 -0.039 -2.199 -0.086 0.250 2.127 0.217 0.151 0.974 0.105 0.111 -0.038 0.284
4 3 pase_0 pase_0_qq_3 pase_0 -2.279 -0.001 -0.002 -4.151 -0.000 -0.406 0.006 0.017 -2.361 -0.001 -0.002 -4.189 -0.002 0.000 -0.532 -0.000 0.059 0.011 -0.000 -0.000 -0.002 0.000
5 4 female pase_0_qq_4 female.yes -3.019 0.145 -0.005 -4.683 0.295 -1.355 0.058 0.000 -2.382 0.156 0.023 -4.285 -0.005 0.344 -0.480 0.343 0.025 0.014 0.183 0.201 0.023 0.410
6 5 age femaleyes age 1.392 -0.001 -0.007 -0.017 0.004 2.801 0.688 0.053 1.680 -0.001 -0.012 0.211 -0.007 0.000 3.150 0.004 0.060 0.025 -0.006 -0.006 -0.012 0.000
7 6 cohab age cohab.yes 0.003 0.019 -0.132 -0.050 0.169 0.056 0.807 0.903 -0.059 0.019 -0.120 -0.119 -0.123 0.201 0.001 0.184 0.620 0.055 0.040 0.041 -0.113 0.222
8 7 ever_smoker cohabyes ever_smoker.yes -0.001 -0.088 -0.240 -1.393 0.064 1.390 0.256 0.998 0.415 -0.084 -0.291 -1.044 -0.214 0.023 1.874 0.066 0.095 0.576 -0.134 -0.125 -0.252 0.023
9 8 diabetes ever_smokeryes diabetes.yes -0.904 0.159 -0.065 -2.286 0.383 0.479 0.163 0.200 -0.798 0.172 -0.013 -2.129 -0.063 0.446 0.534 0.466 0.064 0.240 0.217 0.242 -0.012 0.563
10 9 hypertension diabetesyes hypertension.yes 0.949 0.138 -0.004 -1.098 0.281 2.996 0.058 0.363 0.959 0.148 -0.091 -1.041 -0.004 0.214 2.960 0.324 0.430 0.347 0.061 0.063 -0.087 0.238
11 10 afli hypertensionyes afli.yes 1.395 -0.146 -0.342 0.089 0.050 2.702 0.143 0.036 0.636 -0.136 -0.351 -0.677 -0.290 0.052 1.948 0.051 0.146 0.342 -0.149 -0.139 -0.296 0.053
12 11 ami afliyes ami.yes -1.047 0.147 -0.112 -2.746 0.405 0.652 0.266 0.227 -1.185 0.158 -0.103 -2.807 -0.106 0.457 0.438 0.499 0.216 0.152 0.177 0.194 -0.098 0.580
13 12 tci amiyes tci.yes 2.527 0.138 -0.316 -0.491 0.591 5.545 0.550 0.101 2.150 0.148 -0.362 -0.941 -0.271 0.518 5.240 0.807 0.729 0.172 0.078 0.081 -0.304 0.678
14 13 pad tciyes pad.yes 2.151 0.139 -0.219 -4.206 0.497 8.508 0.447 0.507 2.137 0.149 -0.237 -4.254 -0.197 0.537 8.528 0.643 0.446 0.512 0.150 0.162 -0.211 0.711
15 14 nihss_0 padyes nihss_0 3.275 0.106 0.007 -1.509 0.204 8.058 0.036 0.179 4.002 0.106 0.010 -1.489 0.007 0.224 9.493 0.204 0.032 0.153 0.117 0.117 0.010 0.224
16 15 any_reperf nihss_0 any_reperf.yes 0.176 0.021 -0.127 0.032 0.168 0.320 0.785 0.017 0.182 0.021 -0.174 0.032 -0.119 0.149 0.332 0.183 0.879 0.018 -0.013 -0.012 -0.160 0.160
17 16 mdi_6_newobs_enr any_reperfyes mdi_6_newobs_enr 0.151 mdi_6_newobs_enr mdi_6_newobs_enr -1.191 mdi_6_newobs_enr 1.493 mdi_6_newobs_enr 0.825 -0.236 mdi_6_newobs_enr mdi_6_newobs_enr -1.643 mdi_6_newobs_enr mdi_6_newobs_enr 1.171 mdi_6_newobs_enr mdi_6_newobs_enr 0.742 mdi_6_newobs_enr mdi_6_newobs_enr mdi_6_newobs_enr mdi_6_newobs_enr
18 17 active_treat mdi_6_newobs_enr active_treat.yes mdi_6_newobs_enr -0.084 -0.249 mdi_6_newobs_enr 0.081 mdi_6_newobs_enr 0.316 mdi_6_newobs_enr mdi_6_newobs_enr -0.081 -0.237 mdi_6_newobs_enr -0.220 0.100 mdi_6_newobs_enr 0.084 0.426 mdi_6_newobs_enr -0.068 -0.066 -0.211 0.105
19 18 pase_0 pase_0_qq_2 pase_0 -1.939 -0.001 -0.003 -4.202 -0.000 0.325 0.002 0.093 -1.469 -0.001 -0.003 -3.817 -0.003 -0.000 0.880 -0.000 0.017 0.220 -0.001 -0.001 -0.003 -0.000
20 19 female pase_0_qq_3 female.yes -3.334 0.246 0.074 -5.389 0.418 -1.279 0.005 0.002 -3.346 0.279 0.077 -5.484 0.077 0.451 -1.207 0.519 0.006 0.002 0.264 0.302 0.080 0.570
21 20 age pase_0_qq_4 age -3.218 0.001 -0.005 -5.354 0.008 -1.083 0.658 0.003 -2.767 0.001 -0.015 -5.190 -0.005 0.000 -0.344 0.008 0.062 0.025 -0.007 -0.007 -0.015 0.000
22 21 cohab femaleyes cohab.yes 2.350 -0.094 -0.269 0.768 0.080 3.932 0.290 0.004 2.266 -0.090 -0.197 0.547 -0.236 0.181 3.986 0.084 0.935 0.010 -0.008 -0.008 -0.179 0.199
23 22 ever_smoker age ever_smoker.yes 0.009 -0.021 -0.197 -0.054 0.155 0.072 0.817 0.779 -0.054 -0.020 -0.183 -0.122 -0.178 0.182 0.013 0.168 0.994 0.115 -0.001 -0.001 -0.167 0.199
24 23 diabetes cohabyes diabetes.yes -1.162 0.012 -0.260 -2.738 0.284 0.414 0.932 0.148 -0.409 0.012 -0.299 -2.032 -0.229 0.265 1.213 0.329 0.905 0.620 -0.017 -0.017 -0.259 0.303
25 24 hypertension ever_smokeryes hypertension.yes 0.011 0.232 0.068 -1.502 0.396 1.525 0.006 0.988 0.241 0.261 -0.078 -1.259 0.070 0.278 1.741 0.487 0.272 0.753 0.100 0.105 -0.075 0.321
26 25 afli diabetesyes afli.yes -0.343 -0.025 -0.255 -2.379 0.206 1.694 0.835 0.741 -0.544 -0.024 -0.300 -2.598 -0.225 0.175 1.511 0.229 0.605 0.603 -0.063 -0.061 -0.259 0.191
27 26 ami hypertensionyes ami.yes 1.357 0.200 -0.103 -0.047 0.502 2.761 0.195 0.058 0.592 0.221 -0.031 -0.914 -0.098 0.638 2.099 0.652 0.076 0.440 0.303 0.354 -0.031 0.893
28 27 tci afliyes tci.yes -0.092 -0.660 -1.180 -2.074 -0.140 1.889 0.013 0.927 -0.682 -0.483 -1.210 -2.616 -0.693 -0.180 1.252 -0.130 0.008 0.488 -0.695 -0.501 -0.702 -0.165
29 28 pad amiyes pad.yes 1.483 0.416 0.001 -1.174 0.831 4.141 0.050 0.273 2.282 0.516 -0.155 -0.716 0.001 0.762 5.279 1.296 0.194 0.135 0.304 0.355 -0.143 1.143
30 29 nihss_0 tciyes nihss_0 -4.472 0.142 0.024 -6.447 0.260 -2.498 0.018 0.000 -4.458 0.142 0.007 -6.453 0.024 0.260 -2.462 0.260 0.039 0.000 0.134 0.134 0.007 0.260
31 30 any_reperf padyes any_reperf.yes 2.129 -0.028 -0.198 -1.510 0.142 5.769 0.749 0.251 1.461 -0.027 -0.222 -2.690 -0.179 0.153 5.611 0.153 0.715 0.490 -0.035 -0.034 -0.199 0.165
32 31 nihss_0 0.225 0.045 0.404 0.014 0.208 0.009 0.407 0.040
33 32 any_reperfyes -0.036 -1.480 1.409 0.961 -0.369 -1.839 1.101 0.622

View File

@ -10,7 +10,7 @@ library(dplyr)
library(tidyr) library(tidyr)
dta_all<-read.csv("/Volumes/Data/depression/dep_dataset.csv") dta_all<-read.csv("/Volumes/Data 1/depression/dep_dataset.csv")
# Defining patients to include for analysis # Defining patients to include for analysis
@ -62,9 +62,9 @@ dta$pase_0_bin<-factor(dta$pase_0_bin,levels=c("lower","higher"))
dta$nihss_0_isna<-is.na(dta$nihss_0) dta$nihss_0_isna<-is.na(dta$nihss_0)
dta$pase_0_q<-factor(dta$pase_0_q)
vars<-c("pase_0_q",
vars<-c("pase_0",
"female", "female",
"age", "age",
"cohab", "cohab",
@ -76,11 +76,13 @@ vars<-c("pase_0",
"tci", "tci",
"pad", "pad",
"nihss_0", "nihss_0",
"any_reperf") "any_reperf",
"active_treat")
# tbl1_vars<-c("thrombolysis", "thrombechtomy","inc_time") # tbl1_vars<-c("thrombolysis", "thrombechtomy","inc_time")
labels_all<-list(active_treat~"Active trial treatment", labels_all<-list(active_treat~"Active trial treatment",
pase_0_q~"PASE score quartile",
pase_0~"PASE score", pase_0~"PASE score",
age~"Age", age~"Age",
female~"Female sex", female~"Female sex",

89
experiments_splines.R Normal file
View File

@ -0,0 +1,89 @@
# Experiments
library("sandwich")
library("lmtest")
vars<-c("pase_0", # New variables for analysis
"female",
"age",
"cohab",
"ever_smoker",
"diabetes",
"hypertension",
"afli",
"ami",
"tci",
"pad")
m<-lm(dta$mdi_1_enr~., data = dta[,vars])
summary(m)
coeftest(m, vcov = sandwich)
coefci(m, vcov = sandwich)
source("function_reg_table_robust.R")
reg_table(X = dta[,vars], y = dta[,"mdi_1_enr"]) |> gt()
## Så virker funktionen. Indbygges i script som tidligere.
vars<-c("pase_0", # New variables for analysis
"female",
"age",
"cohab",
"ever_smoker",
"diabetes",
"hypertension",
"afli",
"ami",
"tci",
"pad")
quants <- quantile(dta$pase_0,na.rm=TRUE)
m<-lm(dta$mdi_1_enr~splines::ns(pase_0, knots = quants[2:4])+., data = dta[,vars])
coeftest(m, vcov = sandwich) |> tbl_regression() |> bold_p()
p1 <- ggplot(dta) +
aes(pase_0,mdi_1_enr) +
geom_point(na.rm = TRUE) +
geom_smooth(method='lm', formula= y~x, na.rm = TRUE)+
labs(title="Linear fit", x = "PASE score", y = "MDI score 1 month")
p2 <- ggplot() +
aes(m$model$pase_0, predict(m)) +
geom_point(color="blue") +
geom_smooth(method='lm',formula = y~splines::ns(x, knots = quants[2:4])) +
geom_vline(xintercept=quants) +
ylim(0,max(dta$mdi_1_enr)) +
labs(title="Qubic splines with predicted data", x = "PASE score", y = "MDI score 1 month")
library(patchwork)
p1+p2
# p2 <- ggplot() +
# aes(m$model$pase_0, predict(m)) +
# geom_point(color="maroon",shape=25) +
# geom_smooth(method='lm',formula = y~splines::ns(x, knots = quants[2:4])) +
# geom_vline(xintercept=quants) +
# # ylim(0,max(dta$mdi_1_enr)) +
# labs(title="Qubic splines with predicted data", x = "PASE score", y = "MDI score 1 month")+
# theme_bw(14)
library(npreg)
dta_c <- dta[,c("mdi_1_enr","pase_0")] |> na.omit()
x <- dta_c$pase_0
y <- dta_c$mdi_1_enr
m1<-lm(dta$mdi_1_enr~dta$pase_0)
plot(ss(x, y, knots=quants), xlab = "PASE score", ylab = "MDI score 1 month", ylim=c(min(y),max(y)))
# rug(x)
points(x,y)
abline(coef(m1), lty = 2)
legend("topright", legend = c("ss", "lm"), lty = 1:2, bty = "n")

View File

@ -42,6 +42,7 @@ for (j in colnames(X)){
} }
df_b<-df_b|>data.frame()|>mutate(across(matches('co|lo|hi'),as.numeric)) df_b<-df_b|>data.frame()|>mutate(across(matches('co|lo|hi'),as.numeric))
colnames(df_b)[3:ncol(df_b)]<-paste0("biv_",colnames(df_b)[3:ncol(df_b)])
} }
if (m.mul){ if (m.mul){
@ -70,15 +71,11 @@ for (j in colnames(X)){
} }
df_m<-df_m|>data.frame()|>mutate(across(matches('co|lo|hi'),as.numeric)) df_m<-df_m|>data.frame()|>mutate(across(matches('co|lo|hi'),as.numeric))
colnames(df_m)[3:ncol(df_m)]<-paste0("mul_",colnames(df_m)[3:ncol(df_m)])
} }
if (all(m.biv,m.mul)){ if (all(m.biv,m.mul)){
colnames(df_b)[3:ncol(df_b)]<-paste0("biv_",colnames(df_b)[3:ncol(df_b)])
colnames(df_m)[3:ncol(df_m)]<-paste0("mul_",colnames(df_m)[3:ncol(df_m)])
return(merge(df_b,df_m,by=c("name","pred"),sort=FALSE)) return(merge(df_b,df_m,by=c("name","pred"),sort=FALSE))
} else if (m.biv) { } else if (m.biv) {
return(df_b) return(df_b)

View File

@ -0,0 +1,74 @@
reg_table <- function(X,y,m.biv=TRUE,m.mul=TRUE,inter.add=NULL,robust=TRUE){
# method One of biv, mul, biv_mul
# X = dta[,vars]
# y = dta[,"mdi_1_enr"]
cols<-c("name", "co", "lo", "hi", "pv")
if(!is.null(inter.add)){
form_add<-paste0(paste0(inter.add,collapse = "*"),"+")
m.biv <- FALSE # If interaction term is added, only multivariate is performed.
} else {
form_add=NULL
}
if (m.biv){
df_b <- data.frame(matrix(NA, ncol = length(cols)))
names(df_b)<-cols
for (j in colnames(X)){
m<-lm(formula(paste0("y~",j)),X)
if(robust){
m <- coeftest(m, vcov = sandwich)
pv <- m[-1,4] # Avoids dependency
} else {
pv <- summary(m)$coefficients[-1,4] # Avoids dependency
}
ci <- confint(m)
lo <- ci[-1, 1]
hi <- ci[-1, 2]
co <- coef(m)[-1]
df_b <- rbind(df_b, cbind(name=names(co), co, lo, hi, pv))
}
df_b <- df_b[-1,]
df_b<-df_b|>data.frame()|>mutate(across(matches('co|lo|hi'),as.numeric))
colnames(df_b)[3:ncol(df_b)]<-paste0("biv_",colnames(df_b)[3:ncol(df_b)])
}
if (m.mul){
m<-lm(formula(paste0("y~",form_add,".")),X)
if(robust){
m <- coeftest(m, vcov = sandwich)
pv <- m[-1,4] # Avoids dependency
} else {
pv <- summary(m)$coefficients[-1,4] # Avoids dependency
}
ci <- confint(m)
lo <- ci[-1, 1]
hi <- ci[-1, 2]
co <- coef(m)[-1]
df_m <- cbind(name=c(names(co)), co, lo, hi, pv)
df_m<-df_m|>data.frame()|>mutate(across(matches('co|lo|hi'),as.numeric))
colnames(df_m)[3:ncol(df_m)]<-paste0("mul_",colnames(df_m)[3:ncol(df_m)])
}
if (all(m.biv,m.mul)){
merge(df_b,df_m,by=c("name"),sort=FALSE)
} else if (m.biv) {
return(df_b)
} else {
df_m
}
}

362
master.Rmd Normal file
View File

@ -0,0 +1,362 @@
---
title: "Master file for analysis"
author: "Andreas Gammelgaard Damsbo"
date: "`r format(Sys.time(), '%d.%b.%Y')`"
toc: true
output:
html_document:
df_print: paged
---
# Noter
Ny analyse efter snak med Jan 14.10.22
Plan:
- Analyser med rebust variance estimering (sandwich eller clubSandwich) for at komme omkring transformation af outcome.
- Opdel primær exposure (PASE0) i fire gupper
- Suppler med spline-k analyse med fire knuder
- Behøver visuel tolkning. Jan bruger natural splines. splines::ns()
- Supplerende analyse med
# Overview
```{r}
source("data_format.R")
dta |> skimr::skim(c(vars, "mdi_1_enr","mdi_6_newobs_enr", "active_treat", "pase_0"))
```
# Table 1
```{r}
source("data_format.R")
source("table_1.R")
tbl_1
write.csv(tbl_1[["_data"]][c(3,4,6:10)],"table_1_quarts.csv")
```
# Primære analyse
```{r}
## =============================================================================
## Primary regression analysis
## =============================================================================
source("data_format.R")
outs<-c("mdi_1_enr","mdi_6_newobs_enr")
lbl_x <- NULL # Extra label in file name
inter_reg <- NULL # Interaction variables to include (only multivariate)
biv_mul <- TRUE # Sets flag for both bivariate and multivariate or only multivariate analysis
robust_ci <- TRUE
print_tbl <- TRUE # Print tables? T/F
source("biv_mul_man.R")
export
```
# Spline analyse
## One month
```{r message=FALSE, warning=FALSE}
library("sandwich")
library("lmtest")
source("data_format.R")
vars<-c("pase_0", # New variables for analysis
"female",
"age",
"cohab",
"ever_smoker",
"diabetes",
"hypertension",
"afli",
"ami",
"tci",
"pad",
"active_treat")
quants <- quantile(dta$pase_0,na.rm=TRUE)
m<-lm(dta$mdi_1_enr~splines::ns(pase_0, knots = quants[2:4])+., data = dta[,vars])
coeftest(m, vcov = sandwich) |> tbl_regression() |> bold_p()
```
## Six months
```{r}
m<-lm(dta$mdi_6_newobs_enr~splines::ns(pase_0, knots = quants[2:4])+., data = dta[,vars])
coeftest(m, vcov = sandwich) |> tbl_regression() |> bold_p()
```
## Ploting
```{r}
library(ggplot2)
# dta[,vars]
spline_plot <- function(ds=dta,
x.n="pase_0",
y.n,
t.lab = "Model fit",
x.lab = "PASE score",
y.lab="MDI score",
l.size = .7,
l.color = "black",
l.type = c("dotdash", "solid"),
l.lab = c("Linear", "Cubic \nsplines"),
p.color = "grey50",
p.shape=20,
p.size=.5,
s.knots=quants,
th.size=12,
m.var=NULL){
p <- ggplot() +
aes(ds[,x.n],ds[,y.n]) +
geom_point(na.rm = TRUE,color=p.color,shape=p.shape, size=p.size) +
geom_smooth(method='lm', formula= y~x, na.rm = TRUE, se = FALSE, aes(linetype = "A"),size=l.size, color=l.color) +
geom_vline(xintercept=s.knots[2:(length(quants)-1)], linetype = "dashed") +
labs(title=t.lab, x = x.lab, y = y.lab)+
theme_bw(th.size)
if (!is.null(m.var)){
m <- lm(ds[,y.n]~splines::ns(ds[,x.n], knots = s.knots[2:(length(quants)-1)])+., data = ds[,m.var])
df <- cbind(ds[x.n],stats::predict(m, newdata=ds, interval="confidence", method="lm"))
p + geom_smooth(data=df, aes(x=df[,x.n], y=fit, ymin=lwr, ymax=upr, linetype = "B"), size = l.size, colour = l.color, se = TRUE, stat = "smooth", na.rm=TRUE)+
scale_linetype_manual(name="Fit lines", values=l.type, labels = l.lab)
} else {
p+
geom_smooth(method='lm',formula = y~splines::ns(x, knots = s.knots[2:(length(quants)-1)]), na.rm = TRUE, aes(linetype = "B"),size=l.size, color=l.color)+
scale_linetype_manual(name="Fit lines", values=l.type, labels = l.lab)
}
}
```
```{r}
ds=dta
x.n="pase_0"
y.n="mdi_1_enr"
t.lab = "Model fit"
x.lab = "PASE score"
y.lab="MDI score"
l.size = .7
l.color = "black"
l.type = c("dotdash", "solid")
l.lab = c("Linear", "Cubic \nsplines")
p.color = "grey50"
p.shape=20
p.size=.5
s.knots=quants
th.size=12
m.var=c(vars,"mdi_1_enr")
```
```{r out.width="100%"}
vars_all <- c(vars,"mdi_1_enr")
p1 <- dta |> select(c("mdi_1_enr",vars)) |> spline_plot(y.n="mdi_1_enr",t.lab="One month")
p2 <- spline_plot(y.n="mdi_6_newobs_enr",t.lab="Six months")
dta |> select(c("mdi_1_enr",vars)) |> spline_plot(y.n="mdi_1_enr",t.lab="One month",m.var=c(vars,"mdi_1_enr"))
library(patchwork)
p1/p2 +
plot_layout(guides = "collect") +
plot_annotation(tag_levels = 'A',
caption="Vertical dashed lines mark PASE score quartiles.")
ggsave("spline_plot.png", plot = last_plot(), device = NULL, path = NULL,
scale = 1, width = 150, height = 200, dpi = 450, limitsize = TRUE,
units = "mm")
```
## Multivariate
```{r}
df <- dta[,c(vars,"mdi_6_newobs_enr")]
model <- lm(mdi_6_newobs_enr~splines::ns(pase_0, knots = quants[2:4])+., data = df)
# model <- coeftest(model, vcov = sandwich)
df <- cbind(df,stats::predict(model, newdata=dta, interval="confidence"))
g <- ggplot(df, aes(x=pase_0))
g <- g + geom_point(aes(y = fit), size = 2, colour = "blue")
g <- g + geom_smooth(data=df, aes(y=fit, ymin=lwr, ymax=upr), size = 1.5,
colour = "red", se = TRUE, stat = "smooth")
```
# Kun indsamlede MDI
```{r}
## =============================================================================
## Sensitivity regression analysis
## =============================================================================
source("data_format.R")
outs<-c("mdi_1","mdi_6")
lbl_x <- "_sens" # Extra label in file name
inter_reg <- NULL # Interaction variables to include (only multivariate)
biv_mul <- TRUE # Sets flag for both bivariate and multivariate or only multivariate analysis
robust_ci <- TRUE
print_tbl <- TRUE # Print tables? T/F
source("biv_mul_man.R")
export
# Notes
# - Eliminate anything on stratification to slim the functions
# - Move whole setup over from "00 master.R", easy block execution in .Rmd
```
# Interaktion
```{r}
## =============================================================================
## Interaction regression analysis
## =============================================================================
source("data_format.R")
vars<-c("active_treat", # vars() is defined in data_format.R, here "
"pase_0",
"female",
"age",
"cohab",
"ever_smoker",
"diabetes",
"hypertension",
"afli",
"ami",
"tci",
"pad",
"nihss_0",
"any_reperf")
outs<-c("mdi_1_enr","mdi_6_newobs_enr")
lbl_x <- "_inter" # Extra label in file name
inter_reg <- c("active_treat","pase_0") # Interaction variables to include (only multivariate)
biv_mul <- TRUE # Sets flag for both bivariate and multivariate or only multivariate analysis
print_tbl <- TRUE # Print tables? T/F
# source("regression_interaction.R")
source("biv_mul_man.R")
export
```
# NIHSS-MDI
```{r}
## =============================================================================
## NIHSS~PASE0 regression analysis
## =============================================================================
source("data_format.R")
vars<-c("pase_0_q", # New variables for analysis
"female",
"age",
"cohab",
"ever_smoker",
"diabetes",
"hypertension",
"afli",
"ami",
"tci",
"pad")
outs<-c("nihss_0")
lbl_x <- "_nihss-pase" # Extra label in file name
inter_reg <- NULL # Interaction variables to include (only multivariate)
biv_mul <- TRUE # Sets flag for both bivariate and multivariate or only multivariate analysis
print_tbl <- TRUE # Print tables? T/F
# source("regression_nihss-pase.R")
source("biv_mul_man.R")
export
```
```{r message=FALSE, warning=FALSE}
vars<-c("pase_0", # New variables for analysis
"female",
"age",
"cohab",
"ever_smoker",
"diabetes",
"hypertension",
"afli",
"ami",
"tci",
"pad")
quants <- quantile(dta$pase_0,na.rm=TRUE)
m<-lm(dta$nihss_0~splines::ns(pase_0, knots = quants[2:4])+., data = dta[,vars])
coeftest(m, vcov = sandwich) |> tbl_regression() |> bold_p()
```
```{r}
library(ggplot2)
p1 <- ggplot(dta) +
aes(pase_0,nihss_0) +
geom_point(na.rm = TRUE,color="#008080",shape=23) +
geom_smooth(method='lm', formula= y~x, na.rm = TRUE, se = FALSE)+
labs(title="Linear fit", x = "PASE score", y = "Acute NIHSS")+
theme_bw(14)
p2 <- ggplot() +
aes(m$model$pase_0, predict(m)) +
geom_point(color="maroon",shape=25) +
geom_smooth(method='lm',formula = y~splines::ns(x, knots = quants[2:4])) +
geom_vline(xintercept=quants) +
# ylim(0,max(dta$mdi_1_enr)) +
labs(title="Qubic splines with predicted data", x = "PASE score", y = "Acute NIHSS")+
theme_bw(14)
library(patchwork)
p1+p2
```

BIN
plot.png

Binary file not shown.

Before

Width:  |  Height:  |  Size: 25 KiB

View File

@ -1,15 +1,18 @@
tbl1_vars<-c("active_treat",vars,"inc_time") tbl1_vars<-c("active_treat",vars,"inc_time","mdi_1_enr","mdi_6_newobs_enr","mdi_1","mdi_6_newobs")
tbl_1<-dta|> tbl_1<-dta|>
tbl_summary(missing = "ifany", tbl_summary(by = "pase_0_q",
missing = "ifany",
include = all_of(tbl1_vars), include = all_of(tbl1_vars),
missing_text="(Missing)", missing_text="(Missing)"#,
label = lab_sel(labels_all,tbl1_vars) # label = lab_sel(labels_all,tbl1_vars)
)|> )|>
add_n()|> add_n()|>
add_overall() |>
as_gt() |> as_gt() |>
# modify with gt functions # modify with gt functions
gt::tab_header("Baseline Characteristics") |> gt::tab_header("Baseline Characteristics") |>
gt::tab_options( gt::tab_options(
table.font.size = "small", table.font.size = "small",
data_row.padding = gt::px(1)) data_row.padding = gt::px(1))

File diff suppressed because it is too large Load Diff

File diff suppressed because it is too large Load Diff