PhysicalActivityandStrokeOu.../1 PA Decline/regularisation_steps.R

151 lines
4.8 KiB
R

## ItMLiHSmar2022
## regularisation_steps.R, child script
## Regularised model building and analysation for assignment
## Andreas Gammelgaard Damsbo, agdamsbo@clin.au.dk
##
## Now modified to use in publication
##
## ====================================================================
## Step 0: data import and wrangling
## ====================================================================
setwd("/Users/au301842/PhysicalActivityandStrokeOutcome/1 PA Decline/")
# source("data_format.R")
y1<-factor(as.integer(y)-1) ## Outcome is required to be factor of 0 or 1.
## ====================================================================
## Step 1: settings
## ====================================================================
## Folds
K=10
set.seed(3)
c<-caret::createFolds(y=y,
k = K,
list = FALSE,
returnTrain = TRUE) # Foldids for alpha tuning
## Defining tuning parameters
lambdas=2^seq(-10, 5, 1)
alphas<-seq(0,1,.1)
## Weights for models
weighted=TRUE
if (weighted == TRUE) {
wght<-as.vector(1 - (table(y)[y] / length(y)))
} else {
wght <- rep(1, nrow(y))
}
## Standardise numeric
## Centered and
## ====================================================================
## Step 2: all cross validations for each alpha
## ====================================================================
library(furrr)
library(purrr)
library(doMC)
registerDoMC(cores=6)
# Nested CVs with analysis for all lambdas for each alpha
#
set.seed(3)
cvs <- future_map(alphas, function(a){
cv.glmnet(model.matrix(~.-1,X),
y1,
weights = wght,
lambda=lambdas,
type.measure = "deviance", # This is standard measure and recommended for tuning
foldid = c, # Per recommendation the folds are kept for alpha optimisation
alpha=a,
standardize=TRUE,
family=quasibinomial,
keep=TRUE) # Same as binomial, but not as picky
})
## ====================================================================
# Step 3: optimum lambda for each alpha
## ====================================================================
# For each alpha, lambda is chosen for the lowest meassure (deviance)
each_alpha <- sapply(seq_along(alphas), function(id) {
each_cv <- cvs[[id]]
alpha_val <- alphas[id]
index_lmin <- match(each_cv$lambda.min,
each_cv$lambda)
c(lamb = each_cv$lambda.min,
alph = alpha_val,
cvm = each_cv$cvm[index_lmin])
})
# Best lambda
best_lamb <- min(each_alpha["lamb", ])
# Alpha is chosen for best lambda with lowest model deviance, each_alpha["cvm",]
best_alph <- each_alpha["alph",][each_alpha["cvm",]==min(each_alpha["cvm",]
[each_alpha["lamb",] %in% best_lamb])]
## https://stackoverflow.com/questions/42007313/plot-an-roc-curve-in-r-with-ggplot2
p_roc<-roc.glmnet(cvs[[1]]$fit.preval, newy = y)[[match(best_alph,alphas)]]|> # Plots performance from model with best alpha
ggplot(aes(FPR,TPR)) +
geom_step() +
coord_cartesian(xlim=c(0,1), ylim=c(0,1)) +
geom_abline()+
theme_bw()
## ====================================================================
# Step 4: Creating the final model
## ====================================================================
source("regular_fun.R") # Custom function
optimised_model<-regular_fun(X,y1,K,lambdas=best_lamb,alpha=best_alph)
# With lambda and alpha specified, the function is just a k-fold cross-validation wrapper,
# but keeps model performance figures from each fold.
list2env(optimised_model,.GlobalEnv)
# Function outputs a list, which is unwrapped to Env.
# See source script for reference.
## ====================================================================
# Step 5: creating table of coefficients for inference
## ====================================================================
Bmatrix<-matrix(unlist(B),ncol=10)
Bmedian<-apply(Bmatrix,1,median)
Bmean<-apply(Bmatrix,1,mean)
reg_coef_tbl<-tibble(
name = c("Intercept",Hmisc::label(X)),
medianX = round(Bmedian,5),
ORmed = round(exp(Bmedian),5),
meanX = round(Bmean,5),
ORmea = round(exp(Bmean),5))%>%
# arrange(desc(abs(medianX)))%>%
gt()
## ====================================================================
# Step 6: plotting predictive performance
## ====================================================================
reg_cfm<-confusionMatrix(cMatTest)
reg_auc_sum<-summary(auc_test[,1])
## ====================================================================
# Step 7: Packing list to save in loop
## ====================================================================
ls[[i]] <- list("RegularisedCoefs"=reg_coef_tbl,
"bestA"=best_alph,
"bestL"=best_lamb,
"ConfusionMatrx"=reg_cfm,
"AUROC"=reg_auc_sum)