PhysicalActivityandStrokeOu.../1 PA Decline/00master.R
2022-12-06 14:01:31 +01:00

337 lines
10 KiB
R

##
## Master script
##
## Based on the assignment work from the ISL-course
##
## Generation 2 - 02.december.2022
## Code preparation for analysis on Denmarks Statistics server with enriched data set.
##
## Analysis plan:
## Table 1
## Figure 1: Sankey plot (drop & hop colored)
## Table 2: Linear regression model of pase_6~.
## Table 3: Elastic net prediction models of drop and hop. Performance measures referenced in text.
##
## A Rmarkdown file could be created to write the initial report with main results.
## This code is a bit of a mess, as it is the result of several iterations. It works however.
##
## ====================================================================
# Step 0: Primary outcome
## ====================================================================
# Script to run as hop and drop
pout <- "drop" # Drop to first quartile
# decl_rel
# decl_abs
# drop
# hop
## ====================================================================
## Data
## ====================================================================
setwd("/Users/au301842/PhysicalActivityandStrokeOutcome/1 PA Decline/")
source("data_set.R")
# Loading data-set from USB, to not store on computer
source("data_format.R")
## ====================================================================
##
## Baseline - by PASE group
##
## ====================================================================
ts_q <- X_tbl |>
select(vars) |>
mutate(pase_0_cut = factor(quantile_cut(pase_0, groups = 4)[[1]],ordered = TRUE)) |>
select(-pase_6,-pase_0) |>
tbl_summary(missing = "no",
by="pase_0_cut",
value = list(where(is.factor) ~ "2"),
type = list(mrs_0 ~ "categorical",
all_continuous() ~ "continuous2"),
statistic = list(all_continuous() ~ c("{N_nonmiss}",
"{median} ({p25}, {p75})",
"{min}, {max}",
"{mean} ({sd})"))
) |>
add_overall() |>
add_n ()
ts_q
## ====================================================================
# Drops and hops
## ====================================================================
# TRUEs are patients dropping
table(X_tbl$pase_0_cut!="1"&X_tbl$pase_6_cut=="1")/nrow(X_tbl[X_tbl$pase_0_cut!="1",])
# TRUEs are percentage of patients inactive before stroke being more active after
table(X_tbl$pase_0_cut=="1"&X_tbl$pase_6_cut!="1")/nrow(X_tbl[X_tbl$pase_0_cut=="1",])
# TRUEs are percentage of patients being more active after that were inactive before stroke
table(X_tbl$pase_0_cut=="1"&X_tbl$pase_6_cut!="1")/nrow(X_tbl[X_tbl$pase_6_cut!="1",])
# Difference between hop/no-hop
t.test(X_tbl[X_tbl$pase_0_cut=="1"&X_tbl$pase_6_cut!="1","pase_0"],X_tbl[X_tbl$pase_0_cut=="1"&X_tbl$pase_6_cut=="1","pase_0"])
summary(X_tbl[X_tbl$pase_0_cut=="1"&X_tbl$pase_6_cut!="1","pase_0"])
summary(X_tbl[X_tbl$pase_0_cut=="1"&X_tbl$pase_6_cut=="1","pase_0"])
boxplot(X_tbl[X_tbl$pase_0_cut=="1"&X_tbl$pase_6_cut!="1","pase_0"],X_tbl[X_tbl$pase_0_cut=="1"&X_tbl$pase_6_cut=="1","pase_0"])
# Stationary low
t.test(X_tbl[X_tbl$pase_0_cut=="1"&X_tbl$pase_6_cut=="1","pase_0"],X_tbl[X_tbl$pase_0_cut=="1"&X_tbl$pase_6_cut=="1","pase_6"])
boxplot(X_tbl[X_tbl$pase_0_cut=="1"&X_tbl$pase_6_cut=="1","pase_0"],X_tbl[X_tbl$pase_0_cut=="1"&X_tbl$pase_6_cut=="1","pase_6"])
## ====================================================================
# Sankey plot
## ====================================================================
# source("sankey.R")
# p_delta
## ====================================================================
# Six months PASE: Bivariate and multivariate analyses
## ====================================================================
dta_lmreg <- X_tbl |>
select(vars) |>
mutate(mrs_0=factor(ifelse(mrs_0==1,1,2)))
Hmisc::label(dta_lmreg$mrs_0) <- "Pre-stroke mRS >0"
uv_reg <- tbl_uvregression(data=dta_lmreg,
method=lm,
y="pase_6",
show_single_row = where(is.factor),
estimate_fun = ~style_sigfig(.x,digits = 3),
pvalue_fun = ~style_pvalue(.x, digits = 3)
)
mu_reg <- dta_lmreg |>
lm(formula=pase_6~.,data=_) |>
tbl_regression(show_single_row = where(is.factor),
estimate_fun = ~style_sigfig(.x,digits = 3),
pvalue_fun = ~style_pvalue(.x, digits = 3)
)|>
add_n()
tbl_merge(list(uv_reg,mu_reg))
## ====================================================================
##
## Data variance
##
## Illustrating principal components.
##
## ====================================================================
# source("PCA.R")
#
#
# pca22
# ggsave("pc_plot.png",width = 18, height = 12, dpi = 300, limitsize = TRUE, units = "cm")
## ====================================================================
##
## Models
##
## ====================================================================
# source("assign_full.R")
ls <- list()
for (i in c("drop","hop")){
pout <- i
source("data_format.R")
source("regularisation_steps.R")
}
# Loop to run regularised model on both drop and hop.
# Saved in list for printing and exporting the plot.
## ====================================================================
# Step 1: data merge
## ====================================================================
tbl<-merge(ls$drop$RegularisedCoefs$'_data',ls$hop$RegularisedCoefs$'_data',by="name",all.x=T, sort=F)
## ====================================================================
# Step 2: table
## ====================================================================
com_coef_tbl<-tbl%>%
gt()%>%
fmt_number(
columns=colnames(tbl)[sapply(tbl,is.numeric)], ## Selecting all numeric
rows = everything(),
decimals = 3)%>%
tab_spanner(
label = "DROP",
columns = 2:5
)%>%
tab_spanner(
label = "HOP",
columns = 6:9
)%>%
tab_header(
title = "Model coefficients",
subtitle = "Combined table of both full and regularised model coefficients"
)
# paste0("Regularised model, (a=",
# best_alph,
# ", l=",
# round(best_lamb,3),
# ")")
com_coef_tbl
## ====================================================================
# Step 3: export
## ====================================================================
com_coef_rtf <- file("table2.RTF", "w")
writeLines(com_coef_tbl%>%as_rtf(), com_coef_rtf)
close(com_coef_rtf)
## ====================================================================
##
## Model performance
##
## Table with performance meassures for the two different models.
##
## ====================================================================
## ====================================================================
# Step 1: data set
## ====================================================================
tbl<-data.frame(Meassure=c(names(full_cfm$byClass),"Mean AUC"),
"Regularised model"=round(c(reg_cfm$byClass,reg_auc_sum["Mean"]),3),
"Full model"=round(c(full_cfm$byClass,full_auc_sum["Mean"]),3))
## ====================================================================
# Step 2: table
## ====================================================================
tbl_perf<-tbl%>%
gt()%>%
tab_header(
title = "Performance meassures",
subtitle = "Combined table of both full and regularised performance meassures"
)
tbl_perf
## ====================================================================
# Step 3: export
## ====================================================================
tbl_perf_rtf <- file("table3.RTF", "w")
writeLines(tbl_perf%>%as_rtf(), tbl_perf_rtf)
close(tbl_perf_rtf)
#
## ====================================================================
##
## Secondary analysis
##
## ====================================================================
Xy<-dta_s
X<-dta_s|>select(-group)
y<-dta_s$group
source("assign_full.R")
source("regularisation_steps.R")
## ====================================================================
# Step 1: data merge
## ====================================================================
tbl<-merge(reg_coef_tbl$'_data',full_coef_tbl$'_data',by="name",all.x=T, sort=F)
## ====================================================================
# Step 2: table
## ====================================================================
com_coef_tbl<-tbl%>%
gt()%>%
fmt_number(
columns=colnames(tbl)[sapply(tbl,is.numeric)], ## Selecting all numeric
rows = everything(),
decimals = 3)%>%
tab_spanner(
label = "Full model",
columns = 6:8
)%>%
tab_spanner(
label = paste0("Regularised model, (a=",
best_alph,
", l=",
round(best_lamb,3),
")"),
columns = 2:5
)%>%
tab_header(
title = "Model coefficients",
subtitle = "Combined table of both full and regularised model coefficients"
)
com_coef_tbl
## ====================================================================
# Step 3: export
## ====================================================================
com_coef_rtf <- file("table2_sec.RTF", "w")
writeLines(com_coef_tbl%>%as_rtf(), com_coef_rtf)
close(com_coef_rtf)
## ====================================================================
##
## Model performance
##
## Table with performance meassures for the two different models.
##
## ====================================================================
## ====================================================================
# Step 1: data set
## ====================================================================
tbl<-data.frame(Meassure=c(names(full_cfm$byClass),"Mean AUC"),
"Regularised model"=round(c(reg_cfm$byClass,reg_auc_sum["Mean"]),3),
"Full model"=round(c(full_cfm$byClass,full_auc_sum["Mean"]),3))
## ====================================================================
# Step 2: table
## ====================================================================
tbl_perf<-tbl%>%
gt()%>%
tab_header(
title = "Performance meassures",
subtitle = "Combined table of both full and regularised performance meassures"
)
tbl_perf
## ====================================================================
# Step 3: export
## ====================================================================
tbl_perf_rtf <- file("table3_sec.RTF", "w")
writeLines(tbl_perf%>%as_rtf(), tbl_perf_rtf)
close(tbl_perf_rtf)