## ## Data pull and export for Forskermaskinen ## ## Exports are made in REDCap instead ## ## Data set is made here, not in REDCap, as data here is better organised. ## dta<-read.csv("/Volumes/Data/exercise/source/background.csv",colClasses = "character", na.strings = c("NA","","unknown")) export<-dta[,c("pase_0", "age", "sex", "civil", "smoker", "rtreat", "alc", "afli", "hypertension", "diabetes", "mrs_0", "nihss_c", "thrombolysis", "pad", "thrombechtomy", "ami", "tci", "rdate", "cpr", "rnumb", "height", "weight", "weight_est", "inc_time", "compliant", "mrs_1", "mrs_6", "pase_6", "visit_1", "visit_6")] export$diabetes[is.na(export$diabetes)]<-"no" export$diabetes[is.na(export$hypertension)]<-"no" export$thrombolysis[is.na(export$thrombolysis)]<-"no" export$thrombechtomy[is.na(export$thrombechtomy)]<-"no" export$pad[is.na(export$pad)]<-"no" export$ami[is.na(export$ami)]<-"no" export$inc_time[export$inc_time<0]<-0 export$compliant<-as.numeric(factor(export$compliant)) export$rdate<-as.Date(export$rdate) # export$mrs_0[export$mrs_0==3]<-NA export <- export|> mutate(any_rep=factor(ifelse(thrombolysis=="yes"|thrombechtomy=="yes","yes","no")), # If not noted, no therapy was received weight=ifelse(is.na(weight),weight_est,weight))|> select(-c(weight_est)) write.csv(export|>select(c(rnumb,rtreat)),"/Volumes/Data/SDS upload/study_treatment.csv",row.names = FALSE) write.csv(export,"/Volumes/Data/SDS upload/data_all.csv",row.names = FALSE) write.csv(export|>select(-c(rtreat)),"/Volumes/Data/SDS upload/background.csv",row.names = FALSE)