originally just a small idea. Took way more time.

This commit is contained in:
Andreas Gammelgaard Damsbo 2023-09-11 14:29:17 -07:00
parent 6fae593845
commit d9e96209f2
9 changed files with 655 additions and 166 deletions

View File

@ -0,0 +1,134 @@
"ID","a","b","c","d","e","f","g","h","i","j","k","l","m","n","o","p","q"
"sub1",,,3,,,,,5,,,1,4,,,,2,
"sub2",,,,3,,5,,,,,,1,,2,,,4
"sub3",4,,,,2,,3,,,,,,,,,5,1
"sub4",,,,,2,,5,4,,,,1,,3,,,
"sub5",,,,5,,,2,,4,,1,,,,,3,
"sub6",,4,,,,,,,2,,1,,5,3,,,
"sub7",3,,,,,4,,,,,1,,,,2,5,
"sub8",,,,,2,,4,,1,,3,,,,,5,
"sub9",,3,,,,,,,1,5,,,4,,,,2
"sub10",,,,4,,,,,,3,,,5,,2,1,
"sub11",,5,,4,,,2,,1,,,,,3,,,
"sub12",,,2,5,,,,,,,,,3,4,,,1
"sub13",,,,5,,,,,,,,1,,3,2,,4
"sub14",,3,4,,,5,,,,,,,,,2,,1
"sub15",4,,,,5,,,2,1,,,,,,,,3
"sub16",5,,,2,4,,,,,,1,,,,3,,
"sub17",,4,,,3,1,5,,,,,,,2,,,
"sub18",,,,,1,2,,,3,5,,,,,,4,
"sub19",,,4,,,,3,,1,,2,,,,5,,
"sub20",,,2,,,,1,,,3,4,5,,,,,
"sub21",5,4,,,,2,,,,,1,,,,,,3
"sub22",,,,,1,,3,2,,,5,,,,4,,
"sub23",1,,,,4,,,,,,,,3,,2,,5
"sub24",,,5,,,,,,,,,1,4,2,,3,
"sub25",2,5,,,,3,,,,,,,,,,1,4
"sub26",,2,,5,,,4,,,,,,,,3,,1
"sub27",,,,,3,2,,,5,,,,,4,,1,
"sub28",,,5,,,,,4,,,1,,,2,,3,
"sub29",2,,,,,3,,,1,,5,4,,,,,
"sub30",,,,,,,1,,,4,,3,,,2,,5
"sub31",,,3,,,,,,,5,,1,,4,,,2
"sub32",3,,,,,,,,2,5,,1,,,4,,
"sub33",,2,,,4,,1,5,,,,,,3,,,
"sub34",,,3,1,,,,4,,,5,,,,,,2
"sub35",1,4,,,,,,2,,,,,,,3,5,
"sub36",,5,,3,,4,1,2,,,,,,,,,
"sub37",,,4,,3,,,,,,,1,2,5,,,
"sub38",,,,4,,,,3,,,,2,,1,5,,
"sub39",5,,,,1,4,,2,,,,,,3,,,
"sub40",,,,,4,2,5,1,,,,,,,3,,
"sub41",,1,,,,3,,5,,,,4,2,,,,
"sub42",,,,,,3,,,,,,1,5,,2,,4
"sub43",,,,,,,,,,,1,,3,,4,2,5
"sub44",,4,,,,,,,,,2,,,5,3,,1
"sub45",2,3,,,,,4,,1,,,,,,,,5
"sub46",,3,,,4,,,,,5,1,,,,,,2
"sub47",,2,1,,5,,,,,3,,4,,,,,
"sub48",,2,,,1,3,,,,,5,4,,,,,
"sub49",,,,1,,,,3,,,,2,,,,4,5
"sub50",3,,,,,,,5,,1,,,4,,,2,
"sub51",,,1,3,4,,,,2,,,,,,,5,
"sub52",,,1,,,,,,,4,5,,,,2,3,
"sub53",,,,2,5,,,,,1,,3,,,,4,
"sub54",,,,3,,,,,4,,,1,,2,,5,
"sub55",,,2,,,,4,,,,,,1,3,5,,
"sub56",,,,,,,,,3,,1,5,4,2,,,
"sub57",,,4,,2,,1,,,,,3,,,,,5
"sub58",,3,,,,,,,,,,4,,,1,5,2
"sub59",,,,4,,,1,,3,,5,2,,,,,
"sub60",,,,,,,,2,,,,1,3,5,,4,
"sub61",,,1,,,3,,2,4,,,,,5,,,
"sub62",1,2,,,,,,5,,4,,,,,,3,
"sub63",,2,,,3,,4,,,,,,,5,,,1
"sub64",,,5,,,1,2,,,,3,,,,,,4
"sub65",1,,3,2,,,,,,4,,,5,,,,
"sub66",,,,,,,1,,,,,2,,4,5,,3
"sub67",4,5,,,,,2,,1,,,,,3,,,
"sub68",3,,,2,5,,4,,,1,,,,,,,
"sub69",5,,1,,,,4,,,,,3,,,2,,
"sub70",,2,,,,5,1,,,,3,,4,,,,
"sub71",5,,,,4,2,,1,,,3,,,,,,
"sub72",5,,,4,1,,,,,,3,,,,,2,
"sub73",5,3,,,,,,,4,,,1,,,2,,
"sub74",,5,,2,,3,,,4,,,,,,,,1
"sub75",,,,,,,,,4,1,,5,2,,,,3
"sub76",,1,,,,,2,5,4,,,3,,,,,
"sub77",5,,,,,,3,,,,,,,1,2,,4
"sub78",4,,,,,,1,3,,2,,,,,,5,
"sub79",,,,3,,,,,,,4,1,5,,2,,
"sub80",,2,,,5,4,,,,,,,,,1,3,
"sub81",,,4,,,,2,,1,,,3,,,,,5
"sub82",5,,,,,,,2,4,,,3,,,,,1
"sub83",,2,,,,,4,5,1,,,,,,3,,
"sub84",,,,3,1,,,,,,2,,4,,,5,
"sub85",,,,1,4,,,5,,,,,,,2,,3
"sub86",,,3,,,,,5,1,,,2,4,,,,
"sub87",,,,,2,5,4,,,,,,1,,,3,
"sub88",,,,,,,,,,,,2,3,1,,4,5
"sub89",,,5,2,,,4,,,,,,,1,,3,
"sub90",,5,,1,,,,,,4,,3,,2,,,
"sub91",5,,,,,3,,,4,,2,,,1,,,
"sub92",,,,,,4,,5,,,2,,,,1,3,
"sub93",,,,,1,,,,,4,2,,5,,,3,
"sub94",1,,,,,,2,,,,,,4,5,,,3
"sub95",,,,,4,2,3,,,5,,1,,,,,
"sub96",,5,,2,,,1,,,,,3,,4,,,
"sub97",1,3,,,,,,4,2,,,,,,5,,
"sub98",,,5,,3,,,,,,1,,,2,4,,
"sub99",,,4,,,,,5,,,,,1,3,2,,
"sub100",,2,,,,4,5,,,3,,,1,,,,
"sub101",,3,,1,2,,,,,,4,,,,,,5
"sub102",1,,,2,,5,,,,,,3,,,,4,
"sub103",,3,,,,,5,,1,,,,,2,,,4
"sub104",,5,,4,,1,2,3,,,,,,,,,
"sub105",,,,2,5,,,3,4,,1,,,,,,
"sub106",,,,4,5,3,2,,,,,1,,,,,
"sub107",2,1,3,,,,,,5,,4,,,,,,
"sub108",,,4,,,,,,,1,,,5,,2,,3
"sub109",,4,,,,,,2,1,,,5,,3,,,
"sub110",,,,,3,,,,1,,,,,4,5,,2
"sub111",,,,,,3,,,4,1,,,,,,2,5
"sub112",,1,,,,,,,2,5,,,3,,,4,
"sub113",,,3,,,,,,,,1,5,,4,2,,
"sub114",,,,,1,3,,,,,5,,4,,2,,
"sub115",,1,,,4,2,,,,,3,5,,,,,
"sub116",,2,4,,,3,,5,1,,,,,,,,
"sub117",,,,,,2,,,,4,,1,,5,,3,
"sub118",,4,5,,,1,,,3,,,,,2,,,
"sub119",5,,,3,,,1,,,4,,,2,,,,
"sub120",1,2,4,,,,,,,,,,5,,,,3
"sub121",,2,,,,5,,,,,,1,3,,,,4
"sub122",3,,1,5,,,,,,,,4,,2,,,
"sub123",,1,3,,,,4,5,,,,,,,,2,
"sub124",,,2,,,4,,,,3,,,,,5,,1
"sub125",,,,2,,,,,,,4,1,,5,,,3
"sub126",,,,2,5,,3,,4,,,,,,,1,
"sub127",4,,,,,1,2,,,,,,5,3,,,
"sub128",,,,,1,4,,,,,,3,,,,2,5
"sub129",,,,3,1,2,,4,,,,5,,,,,
"sub130",4,,,,1,,,5,,3,2,,,,,,
"sub131",,,,,1,3,,,,5,2,,,,,,4
"sub132",,,,,2,,5,,,,3,,1,,,,4
"sub133",,4,,,,,,3,,,,,,1,,2,5
1 ID a b c d e f g h i j k l m n o p q
2 sub1 3 5 1 4 2
3 sub2 3 5 1 2 4
4 sub3 4 2 3 5 1
5 sub4 2 5 4 1 3
6 sub5 5 2 4 1 3
7 sub6 4 2 1 5 3
8 sub7 3 4 1 2 5
9 sub8 2 4 1 3 5
10 sub9 3 1 5 4 2
11 sub10 4 3 5 2 1
12 sub11 5 4 2 1 3
13 sub12 2 5 3 4 1
14 sub13 5 1 3 2 4
15 sub14 3 4 5 2 1
16 sub15 4 5 2 1 3
17 sub16 5 2 4 1 3
18 sub17 4 3 1 5 2
19 sub18 1 2 3 5 4
20 sub19 4 3 1 2 5
21 sub20 2 1 3 4 5
22 sub21 5 4 2 1 3
23 sub22 1 3 2 5 4
24 sub23 1 4 3 2 5
25 sub24 5 1 4 2 3
26 sub25 2 5 3 1 4
27 sub26 2 5 4 3 1
28 sub27 3 2 5 4 1
29 sub28 5 4 1 2 3
30 sub29 2 3 1 5 4
31 sub30 1 4 3 2 5
32 sub31 3 5 1 4 2
33 sub32 3 2 5 1 4
34 sub33 2 4 1 5 3
35 sub34 3 1 4 5 2
36 sub35 1 4 2 3 5
37 sub36 5 3 4 1 2
38 sub37 4 3 1 2 5
39 sub38 4 3 2 1 5
40 sub39 5 1 4 2 3
41 sub40 4 2 5 1 3
42 sub41 1 3 5 4 2
43 sub42 3 1 5 2 4
44 sub43 1 3 4 2 5
45 sub44 4 2 5 3 1
46 sub45 2 3 4 1 5
47 sub46 3 4 5 1 2
48 sub47 2 1 5 3 4
49 sub48 2 1 3 5 4
50 sub49 1 3 2 4 5
51 sub50 3 5 1 4 2
52 sub51 1 3 4 2 5
53 sub52 1 4 5 2 3
54 sub53 2 5 1 3 4
55 sub54 3 4 1 2 5
56 sub55 2 4 1 3 5
57 sub56 3 1 5 4 2
58 sub57 4 2 1 3 5
59 sub58 3 4 1 5 2
60 sub59 4 1 3 5 2
61 sub60 2 1 3 5 4
62 sub61 1 3 2 4 5
63 sub62 1 2 5 4 3
64 sub63 2 3 4 5 1
65 sub64 5 1 2 3 4
66 sub65 1 3 2 4 5
67 sub66 1 2 4 5 3
68 sub67 4 5 2 1 3
69 sub68 3 2 5 4 1
70 sub69 5 1 4 3 2
71 sub70 2 5 1 3 4
72 sub71 5 4 2 1 3
73 sub72 5 4 1 3 2
74 sub73 5 3 4 1 2
75 sub74 5 2 3 4 1
76 sub75 4 1 5 2 3
77 sub76 1 2 5 4 3
78 sub77 5 3 1 2 4
79 sub78 4 1 3 2 5
80 sub79 3 4 1 5 2
81 sub80 2 5 4 1 3
82 sub81 4 2 1 3 5
83 sub82 5 2 4 3 1
84 sub83 2 4 5 1 3
85 sub84 3 1 2 4 5
86 sub85 1 4 5 2 3
87 sub86 3 5 1 2 4
88 sub87 2 5 4 1 3
89 sub88 2 3 1 4 5
90 sub89 5 2 4 1 3
91 sub90 5 1 4 3 2
92 sub91 5 3 4 2 1
93 sub92 4 5 2 1 3
94 sub93 1 4 2 5 3
95 sub94 1 2 4 5 3
96 sub95 4 2 3 5 1
97 sub96 5 2 1 3 4
98 sub97 1 3 4 2 5
99 sub98 5 3 1 2 4
100 sub99 4 5 1 3 2
101 sub100 2 4 5 3 1
102 sub101 3 1 2 4 5
103 sub102 1 2 5 3 4
104 sub103 3 5 1 2 4
105 sub104 5 4 1 2 3
106 sub105 2 5 3 4 1
107 sub106 4 5 3 2 1
108 sub107 2 1 3 5 4
109 sub108 4 1 5 2 3
110 sub109 4 2 1 5 3
111 sub110 3 1 4 5 2
112 sub111 3 4 1 2 5
113 sub112 1 2 5 3 4
114 sub113 3 1 5 4 2
115 sub114 1 3 5 4 2
116 sub115 1 4 2 3 5
117 sub116 2 4 3 5 1
118 sub117 2 4 1 5 3
119 sub118 4 5 1 3 2
120 sub119 5 3 1 4 2
121 sub120 1 2 4 5 3
122 sub121 2 5 1 3 4
123 sub122 3 1 5 4 2
124 sub123 1 3 4 5 2
125 sub124 2 4 3 5 1
126 sub125 2 4 1 5 3
127 sub126 2 5 3 4 1
128 sub127 4 1 2 5 3
129 sub128 1 4 3 2 5
130 sub129 3 1 2 4 5
131 sub130 4 1 5 3 2
132 sub131 1 3 5 2 4
133 sub132 2 5 3 1 4
134 sub133 4 3 1 2 5

Binary file not shown.

View File

@ -0,0 +1,188 @@
group_assignment <-
function(ds,
cap_classes = NULL,
excess_space = NULL,
pre_assign = NULL) {
require(dplyr)
require(tidyr)
require(ROI)
require(ROI.plugin.symphony)
require(ompr)
require(ompr.roi)
if (!is.data.frame(ds)){
stop("Supplied data has to be a data frame, with each row
are subjects and columns are groups, with the first column being
subject identifiers")}
## This program very much trust the user to supply correctly formatted data
cost <- t(ds[,-1]) #Transpose converts to matrix
colnames(cost) <- ds[,1]
num_groups <- dim(cost)[1]
num_sub <- dim(cost)[2]
## Adding the option to introduce a bit of head room to the classes by
## the groups to a little bigger than the smallest possible
## Default is to allow for an extra 20 % fill
if (is.null(excess_space)) {
excess <- 1.2
} else {
excess <- excess_space
}
# generous round up of capacities
if (is.null(cap_classes)) {
capacity <- rep(ceiling(excess*num_sub/num_groups), num_groups)
# } else if (!is.numeric(cap_classes)) {
# stop("cap_classes has to be numeric")
} else if (length(cap_classes)==1){
capacity <- ceiling(rep(cap_classes,num_groups)*excess)
} else if (length(cap_classes)==num_groups){
capacity <- ceiling(cap_classes*excess)
} else {
stop("cap_classes has to be either length 1 or same as number of groups")
}
## This test should be a little more elegant
## pre_assign should be a data.frame or matrix with an ID and assignment column
with_pre_assign <- FALSE
if (!is.null(pre_assign)){
# Setting flag for later and export list
with_pre_assign <- TRUE
# Splitting to list for later merging
pre <- split(pre_assign[,1],factor(pre_assign[,2],levels = seq_len(num_groups)))
# Subtracting capacity numbers, to reflect already filled spots
capacity <- capacity-lengths(pre)
# Making sure pre_assigned are removed from main data set
ds <- ds[!ds[[1]] %in% pre_assign[[1]],]
cost <- t(ds[,-1])
colnames(cost) <- ds[,1]
num_groups <- dim(cost)[1]
num_sub <- dim(cost)[2]
}
## Simple NA handling. Better to handle NAs yourself!
cost[is.na(cost)] <- num_groups
i_m <- seq_len(num_groups)
j_m <- seq_len(num_sub)
m <- MIPModel() %>%
add_variable(grp[i, j],
i = i_m,
j = j_m,
type = "binary") %>%
## The first constraint says that group size should not exceed capacity
add_constraint(sum_expr(grp[i, j], j = j_m) <= capacity[i],
i = i_m) %>%
## The second constraint says each subject can only be in one group
add_constraint(sum_expr(grp[i, j], i = i_m) == 1, j = j_m) %>%
## The objective is set to minimize the cost of the assignments
## Giving subjects the group with the highest possible ranking
set_objective(sum_expr(
cost[i, j] * grp[i, j],
i = i_m,
j = j_m
),
"min") %>%
solve_model(with_ROI(solver = "symphony", verbosity = 1))
## Getting assignments
solution <- get_solution(m, grp[i, j]) %>% filter(value > 0)
assign <- solution |> select(i,j)
if (!is.null(rownames(cost))){
assign$i <- rownames(cost)[assign$i]
}
if (!is.null(colnames(cost))){
assign$j <- colnames(cost)[assign$j]
}
## Splitting into groups based on assignment
assign_ls <- split(assign$j,assign$i)
## Extracting subject cost for the final assignment for evaluation
if (is.null(rownames(cost))){
rownames(cost) <- seq_len(nrow(cost))
}
if (is.null(colnames(cost))){
colnames(cost) <- seq_len(ncol(cost))
}
eval <- lapply(seq_len(length(assign_ls)),function(i){
ndx <- match(names(assign_ls)[i],rownames(cost))
cost[ndx,assign_ls[[i]]]
})
names(eval) <- names(assign_ls)
if (with_pre_assign){
names(pre) <- names(assign_ls)
assign_all <- mapply(c, assign_ls, pre, SIMPLIFY=FALSE)
out <- list(all_assigned=assign_all)
} else {
out <- list(all_assigned=assign_ls)
}
export <- do.call(rbind,lapply(seq_along(out[[1]]),function(i){
cbind("ID"=out[[1]][[i]],"Group"=names(out[[1]])[i])
}))
out <- append(out,
list(evaluation=eval,
assigned=assign_ls,
solution = solution,
capacity = capacity,
excess = excess,
pre_assign = with_pre_assign,
cost_scale = levels(factor(cost)),
input=ds,
export=export))
# exists("excess")
return(out)
}
## Assessment performance overview
## The function plots costs of assignment for each subject in every group
assignment_plot <- function(lst){
dl <- lst[[2]]
cost_scale <- unique(lst[[8]])
cap <- lst[[5]]
cnts_ls <- lapply(dl,function(i){
factor(i,levels=cost_scale)
})
require(ggplot2)
require(patchwork)
require(viridisLite)
y_max <- max(lengths(dl))
wrap_plots(lapply(seq_along(dl),function(i){
ttl <- names(dl)[i]
ns <- length(dl[[i]])
cnts <- cnts_ls[[i]]
ggplot() + geom_bar(aes(cnts,fill=cnts)) +
scale_x_discrete(name = NULL, breaks=cost_scale, drop=FALSE) +
scale_y_continuous(name = NULL, limits = c(0,y_max)) +
scale_fill_manual(values = viridisLite::viridis(length(cost_scale), direction = -1)) +
guides(fill=FALSE) + labs(title=paste0(ttl," (fill=",round(ns/cap[[i]],1),";m=",round(mean(dl[[i]]),1) ,")"))
}))
}
## Helper function for Shiny
file_extension <- function(filenames) {
sub(pattern = "^(.*\\.|[^.]+)(?=[^.]*)", replacement = "", filenames, perl = TRUE)
}

View File

@ -0,0 +1,11 @@
"ID","group"
"sub36",16
"sub105",10
"sub112",3
"sub61",15
"sub27",8
"sub78",7
"sub110",1
"sub129",2
"sub109",12
"sub46",14
1 ID group
2 sub36 16
3 sub105 10
4 sub112 3
5 sub61 15
6 sub27 8
7 sub78 7
8 sub110 1
9 sub129 2
10 sub109 12
11 sub46 14

96
apps/Assignment/server.R Normal file
View File

@ -0,0 +1,96 @@
server <- function(input, output, session) {
library(dplyr)
library(tidyr)
library(ROI)
library(ROI.plugin.symphony)
library(ompr)
library(ompr.roi)
library(magrittr)
library(ggplot2)
library(viridisLite)
library(patchwork)
library(openxlsx)
# source("https://git.nikohuru.dk/au-phd/PhysicalActivityandStrokeOutcome/raw/branch/main/side%20projects/assignment.R")
source("group_assign.R")
dat <- reactive({
# input$file1 will be NULL initially. After the user selects
# and uploads a file, head of that data file by default,
# or all rows if selected, will be shown.
req(input$file1)
# Make laoding dependent of file name extension (file_ext())
ext <- file_extension(input$file1$datapath)
if (ext == "csv") {
df <- read.csv(input$file1$datapath,na.strings = c("NA", '""',""))
} else if (ext %in% c("xls", "xlsx")) {
df <- openxlsx::read.xlsx(input$file1$datapath,na.strings = c("NA", '""',""))
} else {
stop("Input file format has to be either '.csv', '.xls' or '.xlsx'")
}
return(df)
})
dat_pre <- reactive({
# req(input$file2)
# Make laoding dependent of file name extension (file_ext())
if (!is.null(input$file2$datapath)){
ext <- file_extension(input$file2$datapath)
if (ext == "csv") {
df <- read.csv(input$file2$datapath,na.strings = c("NA", '""',""))
} else if (ext %in% c("xls", "xlsx")) {
df <- openxlsx::read.xlsx(input$file2$datapath,na.strings = c("NA", '""',""))
} else {
stop("Input file format has to be either '.csv', '.xls' or '.xlsx'")
}
return(df)
} else {
return(NULL)
}
})
assign <-
reactive({
assigned <- group_assignment(
ds = dat(),
excess_space = input$ecxess,
pre_assign = dat_pre()
)
return(assigned)
})
output$raw.data.tbl <- renderTable({
assign()$export
})
output$pre.assign <- renderTable({
dat_pre()
})
output$input <- renderTable({
dat()
})
output$assign.plt <- renderPlot({
assignment_plot(assign())
})
# Downloadable csv of selected dataset ----
output$downloadData <- downloadHandler(
filename = "group_assignment.csv",
content = function(file) {
write.csv(assign()$export, file, row.names = FALSE)
}
)
}

120
apps/Assignment/ui.R Normal file
View File

@ -0,0 +1,120 @@
library(shiny)
library(ggplot2)
ui <- fluidPage(
## -----------------------------------------------------------------------------
## Application title
## -----------------------------------------------------------------------------
titlePanel("Assign groups based on costs/priorities.",
windowTitle = "Group assignment calculator"),
h5(
"Please note this calculator is only meant as a proof of concept for educational purposes,
and the author will take no responsibility for the results of the calculator.
Uploaded data is not kept, but please, do not upload any sensitive data."
),
## -----------------------------------------------------------------------------
## Side panel
## -----------------------------------------------------------------------------
## -----------------------------------------------------------------------------
## Single entry
## -----------------------------------------------------------------------------
sidebarLayout(
sidebarPanel(
numericInput(
inputId = "ecxess",
label = "Excess space",
value = 1,
step = .05
),
## -----------------------------------------------------------------------------
## File upload
## -----------------------------------------------------------------------------
# Input: Select a file ----
fileInput(
inputId = "file1",
label = "Choose main data file",
multiple = FALSE,
accept = c(
".csv",".xls",".xlsx"
)
),
strong("Columns: ID, group1, group2, ... groupN."),
strong("NOTE: 0s will be interpreted as lowest score."),
p("Cells should contain cost/priorities.
Lowest score, for highest priority.
Non-ranked should contain a number (eg lowest score+1).
Will handle missings but try to avoid."),
fileInput(
inputId = "file2",
label = "Choose data file for pre-assigned subjects",
multiple = FALSE,
accept = c(
".csv",".xls",".xlsx"
)
),
h6("Columns: ID, group"),
## -----------------------------------------------------------------------------
## Download output
## -----------------------------------------------------------------------------
# Horizontal line ----
tags$hr(),
h4("Download results"),
# Button
downloadButton("downloadData", "Download")
),
mainPanel(tabsetPanel(
## -----------------------------------------------------------------------------
## Plot tab
## -----------------------------------------------------------------------------
tabPanel(
"Summary",
h3("Assignment plot"),
p("These plots are to summarise simple performance meassures for the assignment.
'f' is group fill fraction and 'm' is mean cost in group."),
plotOutput("assign.plt")
),
tabPanel(
"Results",
h3("Raw Results"),
p("This is identical to the downloaded file (see panel on left)"),
htmlOutput("raw.data.tbl", container = span)
),
tabPanel(
"Input data Results",
h3("Costs/prioritis overview"),
htmlOutput("input", container = span),
h3("Pre-assigned groups"),
p("Appears empty if none is uploaded."),
htmlOutput("pre.assign", container = span)
)
))
)
)

View File

@ -0,0 +1,39 @@
## -----------------------------------------------------------------------------
## Group assignment app
## -----------------------------------------------------------------------------
##
## Special cases to consider
## - duplicate scores
## - missing scores
## - Pre-assignment of special cases - SOLVED
## - Make sure to remove assigned subjects from all subjects when pre-assigning
## - Set class to output list and have plot function only accept correct class (not necessary for Shiny)
## - Use knitr::kable() to show sample data, alternatively use gt()
## - Handle [NA, 0, ""]
##
## I believe we are ready for a shiny app!
## -- START WITH THIS -- ##
old_wd<-getwd()
setwd(paste0(old_wd,"/apps/Assignment"))
shiny::runApp(appDir = "/Users/au301842/PAaSO/apps/Assignment",launch.browser = TRUE)
## App deployment
require(rsconnect)
keys<-suppressWarnings(read.csv("/Users/au301842/shinyapp_token.csv",colClasses = "character"))
rsconnect::setAccountInfo(name='cognitiveindex',
token=keys$key[1], secret=keys$key[2])
deployApp()
source(paste0(old_wd,"/apps/app_deploy.R"))
setwd(old_wd)
## Raw sketch, doesn't load correctly...

View File

@ -1,172 +1,73 @@
group_assignment <- # Sample data set is generated with rownames and colnames
function(ds, ds <- do.call(cbind,lapply(1:133,function(i){
cap_classes = NULL, sample(c(1,2,3,4,5,rep(NA,12)),size=17)
excess_space = NULL,
pre_assign = NULL) {
require(dplyr)
require(tidyr)
require(ROI)
require(ROI.plugin.symphony)
require(ompr)
require(ompr.roi)
if (!is.data.frame(ds)){
stop("Supplied data has to be a data frame, with each row
are subjects and columns are groups, with the first column being
subject identifiers")}
## This program very much trust the user to supply correctly formatted data
cost <- t(ds[-1]) #Transpose converts to matrix
num_groups <- dim(cost)[1]
num_sub <- dim(cost)[2]
## Adding the option to introduce a bit of head room to the classes by
## the groups to a little bigger than the smallest possible
## Default is to allow for an extra 20 % fill
if (is.null(cap_classes)) {
if (is.null(excess_space)) {
excess <- 1.2
} else {
excess <- excess_space
}
capacity <- rep(ceiling(excess*num_sub/num_groups), num_groups)
} else {
capacity <- cap_classes
}
## This test should be a little more elegant
## pre_assign should be a data.frame or matrix with an ID and assignment column
with_pre_assign <- FALSE
if (!is.null(pre_assign)){
with_pre_assign <- TRUE
pre <- split(pre_assign[,1],factor(pre_assign[,2],levels = seq_len(num_groups)))
capacity <- capacity-lengths(pre)
}
i_m <- seq_len(num_groups)
j_m <- seq_len(num_sub)
m <- MIPModel() %>%
add_variable(grp[i, j],
i = i_m,
j = j_m,
type = "binary") %>%
## The first constraint says that group size should not exceed capacity
add_constraint(sum_expr(grp[i, j], j = j_m) <= capacity[i],
i = i_m) %>%
## The second constraint says each subject can only be in one group
add_constraint(sum_expr(grp[i, j], i = i_m) == 1, j = j_m) %>%
## The objective is set to minimize the cost of the assignments
## Giving subjects the group with the highest possible ranking
set_objective(sum_expr(
cost[i, j] * grp[i, j],
i = i_m,
j = j_m
),
"min") %>%
solve_model(with_ROI(solver = "symphony", verbosity = 1))
## Getting assignments
assign <- get_solution(m, grp[i, j]) %>%
filter(value > 0) |> select(i,j)
if (!is.null(rownames(cost))){
assign$i <- rownames(cost)[assign$i]
}
if (!is.null(colnames(cost))){
assign$j <- colnames(cost)[assign$j]
}
## Splitting into groups based on assignment
assign_ls <- split(assign$j,assign$i)
## Extracting subject cost for the final assignment for evaluation
if (is.null(rownames(cost))){
rownames(cost) <- seq_len(nrow(cost))
}
if (is.null(colnames(cost))){
colnames(cost) <- seq_len(ncol(cost))
}
eval <- lapply(seq_len(length(assign_ls)),function(i){
ndx <- match(names(assign_ls)[i],rownames(cost))
cost[ndx,assign_ls[[i]]]
})
names(eval) <- names(assign_ls)
if (with_pre_assign){
names(pre) <- names(assign_ls)
assign_all <- mapply(c, assign_ls, pre, SIMPLIFY=FALSE)
return(list("Group assignment"=assign_all,
"Cost evaluation"=eval,
"Group assigned"=assign_ls))
} else {
return(list("Group assignment"=assign_ls,
"Cost evaluation"=eval))
}
}
## Assessment performance overview
## The function plots costs of assignment for each subject in every group
assignment_plot <- function(dl,cost_scale){
require(ggplot2)
require(patchwork)
y_max <- max(lengths(dl))
wrap_plots(lapply(seq_along(dl),function(i){
ttl <- names(dl)[i]
ns <- length(dl[[i]])
cnts <- factor(dl[[i]],levels=cost_scale)
ggplot() + geom_bar(aes(cnts,fill=cnts)) +
scale_x_discrete(name = NULL, breaks=cost_scale, drop=FALSE) +
scale_y_continuous(name = NULL, limits = c(0,y_max)) +
# coord_cartesian(ylim=c(0,1)) +
guides(fill=FALSE) + labs(title=paste0(ttl," (n=",ns,")"))
})) }))
} rownames(ds) <- letters[seq_len(nrow(ds))]
colnames(ds) <- paste0("sub",seq_len(ncol(ds)))
## Sample data set is generated with rownames and colnames # df[as.character(as.matrix(ds))==0] <- 17
# ds <- do.call(cbind,lapply(1:133,function(i){
# sample(c(1,2,2,3,4,rep(0,12)),size=17)
# }))
# rownames(ds) <- letters[seq_len(nrow(ds))]
# colnames(ds) <- paste0("sub",seq_len(ncol(ds)))
## Clearing NAs and applying the max cost instead # Clearing NAs and applying the max cost instead
# ds[is.na(ds)] <- 17 # ds[is.na(ds)] <- 17
## I believe this would actually be the organic data set # I believe this would actually be the organic data set
# df <- data.frame("ID"=colnames(ds),t(ds)) df <- data.frame("ID"=colnames(ds),t(ds))
#
# df[as.matrix(df)==0] <- 17
#
# assigned <- df |>
# group_assignment(cap_classes = rep(8, 17),excess_space = 1)
#
#
# assigned$`Group assignment`
#
# assigned$`Cost evaluation` |> assignment_plot(1:5)
## Special cases to consider
## - duplicate scores
## - missing scores
## - Pre-assignment of special cases - SOLVED
##
## I believe we are ready for a shiny app!
# pre_grouped <- data.frame("ID"=sample(df$ID,10),"group"=sample(1:17,10)) openxlsx::write.xlsx(df,"assign_sample.xlsx")
# assigned <- df |> write.csv(df,"assign_sample.csv",na = "",row.names = FALSE)
# group_assignment(excess_space = 1.05,
# pre_assign = pre_grouped)
df[as.matrix(df)==0] <- 17
assigned <- df |>
group_assignment(cap_classes = rep(8, 17),excess_space = 1)
df |> group_assignment()
assigned$`Group assignment`
assigned$`Cost evaluation` |> assignment_plot(1:5)
pre_grouped <- data.frame("ID"=sample(df$ID,10),"group"=sample(1:17,10))
ds <- df
assigned <- df |>
group_assignment(excess_space = 1.05,
pre_assign = pre_grouped)
lengths(assigned[[1]])
# #
# lengths(assigned[[1]]) # ds <- read.csv("assign_sample.csv")
#
# ls <- read.csv("assign_sample.csv") |> group_assignment(cap_classes = 8, excess_space = 1)
#
# ls |> assignment_plot()
#
# lst <- ls
#
# "[["(ls,4) |> head(10)
# View(ls$export)
#
# pre_grouped <- data.frame("ID"=sample(ds$ID,10),"group"=sample(1:17,10))
# write.csv(pre_grouped,"pre_grouped.csv",row.names = FALSE)
#
# assigned <- ds |>
# group_assignment(excess_space = 1.05,
# pre_assign = pre_grouped)
# ls <-
# read.csv("assign_sample.csv") |> group_assignment(
# cap_classes = 8,
# excess_space = 1,
# pre_assign = read.csv("pre_grouped.csv")
# )