Ny analyse

This commit is contained in:
AG Damsbo 2022-10-05 14:53:56 +02:00
parent 2c5677dc36
commit 5e379b71cf
2 changed files with 82 additions and 35 deletions

View File

@ -46,7 +46,7 @@ source("data_format.R")
library(tidyverse)
library(glue)
library(patchwork)
library(ggdendro)
# library(ggdendro)
library(corrplot)
library(gt)
library(gtsummary)
@ -106,7 +106,6 @@ ls<-lapply(1:ncol(X_tbl_f),function(x){
ts_e<-tbl_summary(X_tbl,
missing = "no",
# label = ls[-length(ls)], ## Removing the last, as this is output
value = list(where(is.factor) ~ "2"),
type = list(mrs_0 ~ "categorical",
mrs_1 ~ "categorical"),
@ -124,6 +123,55 @@ ts_rtf <- file("table1_overall.RTF", "w")
writeLines(ts%>%as_rtf(), ts_rtf)
close(ts_rtf)
## ====================================================================
# Baseline table - by PASE group
## ====================================================================
ts_q <- X_tbl |>
select(vars) |>
mutate(pase_0_cut = factor(quantile_cut(pase_0, groups = 4)[[1]],ordered = TRUE)) |>
select(-pase_6,-pase_0) |>
tbl_summary(missing = "no",
by="pase_0_cut",
value = list(where(is.factor) ~ "2"),
type = list(mrs_0 ~ "categorical"),
statistic = list(all_continuous() ~ "{median} ({p25};{p75}) [{min},{max}]")
) |>
add_overall() |>
add_n
ts_q
## ====================================================================
# Six months PASE: Bivariate and multivariate analyses
## ====================================================================
dta_lmreg <- X_tbl |>
select(vars) |>
mutate(mrs_0=factor(ifelse(mrs_0==1,1,2)))
Hmisc::label(dta_lmreg$mrs_0) <- "Pre-stroke mRS >0"
uv_reg <- tbl_uvregression(data=dta_lmreg,
method=lm,
y="pase_6",
show_single_row = where(is.factor),
estimate_fun = ~style_sigfig(.x,digits = 3),
pvalue_fun = ~style_pvalue(.x, digits = 3)
)
mu_reg <- dta_lmreg |>
lm(formula=pase_6~.,data=_) |>
tbl_regression(show_single_row = where(is.factor),
estimate_fun = ~style_sigfig(.x,digits = 3),
pvalue_fun = ~style_pvalue(.x, digits = 3)
)|>
add_n()
tbl_merge(list(uv_reg,mu_reg))
## ====================================================================
##
@ -192,6 +240,7 @@ writeLines(com_coef_tbl%>%as_rtf(), com_coef_rtf)
close(com_coef_rtf)
## ====================================================================
##
## Model performance

View File

@ -71,35 +71,33 @@ dta <- export %>%
# Step 5: Ordering variables
## ====================================================================
vars <- c("age",
"male_sex",
"civil",
"pase_0",
"smoker",
"alc",
"afli",
"hypertension",
"diabetes",
"pad",
"ami",
"tci",
"mrs_0",
"nihss_c",
"any_rep",
"rtreat",
"pase_6")
dta<-select(dta,c(age,
male_sex,
civil,
pase_0,
smoker,
# smoker_prev,
alc,
afli,
hypertension,
diabetes,
pad,
ami,
tci,
mrs_0,
nihss_c,
# thrombolysis,
# thrombechtomy,
any_rep,
rtreat,
pase_6,
mrs_1,
mfi_gen_1,
mfi_phys_1,
mfi_act_1,
mfi_mot_1,
mfi_men_1,
mdi_1,
who5_score_1
dta<-select(dta,c(vars,
"mrs_1",
"mfi_gen_1",
"mfi_phys_1",
"mfi_act_1",
"mfi_mot_1",
"mfi_men_1",
"mdi_1",
"who5_score_1"
))
## ====================================================================
@ -114,10 +112,10 @@ var.labels = c(age="Age",
smoker="Daily or occasinally smoking",
# smoker_prev="Previous habbit of smoking",
alc="More alcohol than recommendation",
afli="Known AFIB",
hypertension="Known hypertension",
diabetes="Known diabetes",
pad="Known PAD",
afli="AFIB",
hypertension="Hypertension",
diabetes="Diabetes",
pad="PAD",
ami="Previous MI",
tci="Previous TIA",
mrs_0="Pre-stroke mRS [-1]",
@ -193,7 +191,7 @@ X_tbl <- X_tbl|>
detail.lst=FALSE),
pase_drop_fac=factor(ifelse(pase_6_cut==1&pase_0_cut!=1,"yes","no")))
label(X_tbl) = as.list(var.labels[match(names(X_tbl), names(var.labels))])
Hmisc::label(X_tbl) = as.list(var.labels[match(names(X_tbl), names(var.labels))])
# Setting final primary output from "pout"
if (pout=="decl_rel"){