PhysicalActivityandStrokeOu.../1 PA Decline/archive/prediction exercise.R

143 lines
3.9 KiB
R
Raw Normal View History

# https://www.machinelearningplus.com/machine-learning/caret-package/
# install.packages(c('caret', 'skimr', 'RANN', 'randomForest', 'fastAdaboost', 'gbm', 'xgboost', 'caretEnsemble', 'C50', 'earth'))
# Load the caret package
library(caret)
# Import dataset
orange <- read.csv('https://raw.githubusercontent.com/selva86/datasets/master/orange_juice_withmissing.csv')
# Structure of the dataframe
str(orange)
# See top 6 rows and 10 columns
head(orange[, 1:10])
# Create the training and test datasets
set.seed(100)
# Step 1: Get row numbers for the training data
trainRowNumbers <- createDataPartition(orange$Purchase, p=0.8, list=FALSE)
# Step 2: Create the training dataset
trainData <- orange[trainRowNumbers,]
# Step 3: Create the test dataset
testData <- orange[-trainRowNumbers,]
# Store X and Y for later use.
x = trainData[, 2:18]
y = trainData$Purchase
library(skimr)
skimmed <- skim(trainData)
skimmed
# Create the knn imputation model on the training data
preProcess_missingdata_model <- preProcess(trainData, method='knnImpute')
preProcess_missingdata_model
# Use the imputation model to predict the values of missing data points
library(RANN) # required for knnInpute
trainData <- predict(preProcess_missingdata_model, newdata = trainData)
anyNA(trainData)
# One-Hot Encoding
# Creating dummy variables is converting a categorical variable to as many binary variables as here are categories.
dummies_model <- dummyVars(Purchase ~ ., data=trainData)
# Create the dummy variables using predict. The Y variable (Purchase) will not be present in trainData_mat.
trainData_mat <- predict(dummies_model, newdata = trainData)
# # Convert to dataframe
trainData <- data.frame(trainData_mat)
# # See the structure of the new dataset
str(trainData)
preProcess_range_model <- preProcess(trainData, method='range')
trainData <- predict(preProcess_range_model, newdata = trainData)
# Append the Y variable
trainData$Purchase <- y
apply(trainData[, 1:10], 2, FUN=function(x){c('min'=min(x), 'max'=max(x))})
featurePlot(x=trainData[,1:18],
y=factor(trainData$Purchase),
plot="box",
strip=strip.custom(par.strip.text=list(cex=.7)),
scales = list(x = list(relation="free"),
y = list(relation="free")))
featurePlot(x=trainData[,1:18],
y=factor(trainData$Purchase),
plot="density",
strip=strip.custom(par.strip.text=list(cex=.7)),
scales = list(x = list(relation="free"),
y = list(relation="free")))
# 5
set.seed(100)
options(warn=-1)
subsets <- c(1:5, 10, 15, 18)
ctrl <- rfeControl(functions = rfFuncs,
method = "repeatedcv",
repeats = 5,
verbose = FALSE)
lmProfile <- rfe(x=trainData[, 1:18], y=factor(trainData$Purchase),
sizes = subsets,
rfeControl = ctrl)
lmProfile
# See available algorithms in caret
modelnames <- dput(names(getModelInfo()))
# modelnames <- paste(names(getModelInfo()), collapse=', ')
modelnames
# Set the seed for reproducibility
set.seed(100)
# Train the model using randomForest and predict on the training data itself.
model_mars = train(Purchase ~ ., data=trainData, method='earth')
fitted <- predict(model_mars)
model_mars
plot(model_mars, main="Model Accuracies with MARS")
varimp_mars <- varImp(model_mars)
plot(varimp_mars, main="Variable Importance with MARS")
## 6.4
# Step 1: Impute missing values
testData2 <- predict(preProcess_missingdata_model, testData)
# Step 2: Create one-hot encodings (dummy variables)
testData3 <- predict(dummies_model, testData2)
# Step 3: Transform the features to range between 0 and 1
testData4 <- predict(preProcess_range_model, testData3)
# View
head(testData4[, 1:10])
predicted <- predict(model_mars, testData4)
head(predicted)
# Compute the confusion matrix
confusionMatrix(reference = factor(testData$Purchase), data = predicted, mode='everything', positive='MM')