mirror of
https://github.com/agdamsbo/stRoke.git
synced 2024-11-21 20:40:22 +01:00
114 lines
3.6 KiB
R
114 lines
3.6 KiB
R
utils::globalVariables(c("vname", "lo", "or", "ord", "up"))
|
|
#' Confidence interval plot with point estimate
|
|
#'
|
|
#' Horizontal forest plot of point estimate with confidence intervals.
|
|
#' Includes dichotomous or olr, depending on number of levels in "x".
|
|
#' Title and axis labels can be added to the ggplot afterwards.
|
|
#'
|
|
#' @param ds main input, either data set or logistic model
|
|
#' @param x text string of main exposure variable
|
|
#' @param y text string of outcome variable
|
|
#' @param vars variables for multivariate analysis.
|
|
#' @param dec Decimals in labels
|
|
#' @param lbls Labels for variable names
|
|
#' @param title Plot title. Can be specified later.
|
|
#' @param method Character vector. The method for the regression.
|
|
#' Can be c("auto", "model").
|
|
#'
|
|
#' @return ggplot element
|
|
#' @export
|
|
#'
|
|
#' @import ggplot2
|
|
#' @importFrom MASS polr
|
|
#' @importFrom stats as.formula coef confint lm quantile reorder binomial glm
|
|
#'
|
|
#' @examples
|
|
#' # Auto plot
|
|
#' data(talos)
|
|
#' talos[,"mrs_1"]<-factor(talos[,"mrs_1"],ordered=TRUE)
|
|
#' ci_plot(ds = talos, x = "rtreat", y = "mrs_1",
|
|
#' vars = c("hypertension","diabetes"))
|
|
#' ## Model plot
|
|
#' # iris$ord<-factor(sample(1:3,size=nrow(iris),replace=TRUE),ordered=TRUE)
|
|
#' # lm <- MASS::polr(ord~., data=iris, Hess=TRUE, method="logistic")
|
|
#' # ci_plot(ds = lm, method="model")
|
|
ci_plot <-
|
|
function(ds,
|
|
x = NULL,
|
|
y = NULL,
|
|
vars = NULL,
|
|
dec = 3,
|
|
lbls = NULL,
|
|
title = NULL,
|
|
method = "auto") {
|
|
|
|
if (!method %in% c("auto", "model"))
|
|
stop("Method has to either 'auto' or 'model'")
|
|
|
|
if (method == "auto") {
|
|
if (!is.factor(ds[, y]))
|
|
stop("Outcome has to be factor")
|
|
|
|
# Formula
|
|
ci_form <- as.formula(paste0(y, "~", x, "+."))
|
|
|
|
# Ordinal logistic regression for non-dichotomous factors
|
|
if (length(levels(ds[, y])) > 2) {
|
|
m <- MASS::polr(
|
|
formula = ci_form,
|
|
data = ds[, unique(c(x, y, vars))],
|
|
Hess = TRUE,
|
|
method = "logistic"
|
|
)
|
|
if (is.null(title))
|
|
title <- "Ordinal logistic regression"
|
|
}
|
|
|
|
# Binary logistic regression for dichotomous factors
|
|
if (length(levels(ds[, y])) == 2) {
|
|
m <- glm(formula = ci_form,
|
|
data = ds[unique(c(x, y, vars))],
|
|
family = binomial())
|
|
if (is.null(title))
|
|
title <- "Binary logistic regression"
|
|
}
|
|
} else if (method == "model") {
|
|
if (is.data.frame(ds)) {
|
|
stop("Method is 'model', but input is data.frame")
|
|
}
|
|
m <- ds
|
|
}
|
|
|
|
odds <- data.frame(cbind(exp(coef(m)), exp(confint(m))))
|
|
|
|
names(odds) <- c("or", "lo", "up")
|
|
rodds <- round(odds, digits = dec)
|
|
|
|
if (is.null(lbls)) {
|
|
odds$vname <- paste0(row.names(odds),
|
|
" \n",
|
|
paste0(rodds$or, "
|
|
[", rodds$lo, ":", rodds$up, "]"))
|
|
} else {
|
|
odds$vname <- paste0(lbls,
|
|
" \n",
|
|
paste0(rodds$or,
|
|
" [", rodds$lo, ":", rodds$up, "]"))
|
|
|
|
}
|
|
|
|
odds$ord <- rev(seq_len(nrow(odds)))
|
|
|
|
ggplot2::ggplot(data = odds,
|
|
mapping = ggplot2::aes(y = or, x = reorder(vname, ord))) +
|
|
ggplot2::geom_point() +
|
|
ggplot2::geom_errorbar(mapping = ggplot2::aes(ymin = lo, ymax = up),
|
|
width = 0.2) +
|
|
ggplot2::scale_y_log10() +
|
|
ggplot2::geom_hline(yintercept = 1, linetype = 2) +
|
|
ggplot2::labs(title = title) +
|
|
ggplot2::coord_flip()
|
|
}
|
|
|
|
|