stRoke/R/pase_calc.R

197 lines
5.4 KiB
R
Raw Normal View History

#' PASE score calculator
#'
#' Calculates PASE score from raw questionnaire data.
#' @param ds data set
#' @param adjust_work flag to set whether to include 10b type 1.
2024-02-07 20:57:11 +01:00
#' @param consider.missing character vector of values considered missing.
#' Default is TRUE.
#'
#' @return data.frame
#' @export
#' @details
#' Labelling should be as defined by the questionnaire.
#' 02-06 should start with 0:3, 02a-06b should start with 1:4.
#'
#' ## Regarding work scoring
#' The score calculation manual available for the PASE questionnaire, all types
#' of work should be included. According to the article by
#' Washburn RA. et al (1999) sitting work is not included in the item 10 score.
#' This differentiation is added with the option to set `adjust_work` to
#' exclude item 10b category 1 work (set `TRUE`).
#'
#' ## Regarding output
#' Output includes sub scores as well as sums, but also to columns assessing data
#' quality and completeness. If any field has not been filled, `score_incompletes`
#' will return `TRUE`. If all measures are missing `score_missings` is `TRUE`.
#' If `adjust_work==TRUE`, 10b has to be filled, or `score_incompletes` will be
#' set `TRUE`.
#'
#' @examples
#' summary(pase_calc(stRoke::pase)[,13])
2024-02-07 20:57:11 +01:00
#' str(pase_calc(stRoke::pase))
#'
2024-02-07 20:57:11 +01:00
pase_calc <- function(ds,
adjust_work = FALSE,
consider.missing = c("Not available")) {
2024-02-07 20:57:11 +01:00
if (ncol(ds) != 21) {
stop("supplied data set has to contain exactly 21 columns.
Formatting should follow the stRoke::pase data set.")
}
pase <- ds
## Classify all as characters
## Labelling should be as defined by the questionnaire.
## 02-06 should start with 0:3, 02a-06b should start with 1:4.
pase <- do.call(data.frame, lapply(pase, as.character))
## Missings and incompletes
2024-02-07 20:57:11 +01:00
# Cosidered missing if all data is missing
missings <- apply(apply(ds, 2, is.na), 1, all)
2024-02-07 20:57:11 +01:00
# Considered incomplete if any entry in main answers is missing
mains <- grep("([0-9]{2}|(09[a-d]))$",colnames(pase))
if (length(mains)!=13){
stop("The supplied dataset does not contain expected variable names.
Please run str(stRoke::pase) and format your data accordingly.")
}
incompletes <-
2024-02-07 20:57:11 +01:00
apply(sapply(ds[, mains], function(x) {
x %in% consider.missing | is.na(x)
}), 1, any)
names(pase) <- c(
"pase01",
"pase01b",
"pase02",
"pase02a",
"pase03",
"pase03b",
"pase04",
"pase04b",
"pase05",
"pase05b",
"pase06",
"pase06b",
"pase07",
"pase08",
"pase09a",
"pase09b",
"pase09c",
"pase09d",
"pase10",
"pase10a",
"pase10b"
)
pase_list <- lapply(unique(substr(names(pase), 5, 6)), function(x) {
pase[grepl(x, substr(names(pase), 5, 6))]
})
names(pase_list) <- unique(substr(names(pase), 5, 6))
## PASE 2-6
2024-02-07 20:57:11 +01:00
pase_weights <- list(
"1" = c(
"1" = 0.11,
"2" = 0.32,
"3" = 0.64,
"4" = 1.07
),
"2" = c(
"1" = 0.25,
"2" = 0.75,
"3" = 1.5,
"4" = 2.5
),
"3" = c(
"1" = 0.43,
"2" = 1.29,
"3" = 2.57,
"4" = 4.29
)
)
## Multiplication factors
pase_multip_26 <- c(20, 21, 23, 23, 30)
pase_score_26 <- lapply(seq_along(pase_list[2:6]), function(x) {
df <- pase_list[2:6][[x]]
2024-02-07 20:57:11 +01:00
# score <- c()
## =====================
## Checking labelling
2024-02-07 20:57:11 +01:00
if (!all(stRoke::str_extract(df[, 1], "^[0-3]") |>
as.numeric() |>
range(na.rm = TRUE) == c(0, 3))) {
stop("Labelling of 02-06 should start with a number ranging 0-3")
}
2024-02-07 20:57:11 +01:00
if (!all(stRoke::str_extract(df[, 2], "^[1-4]") |>
as.numeric() |>
range(na.rm = TRUE) == c(1, 4))) {
stop("Labelling of 02-06 subscores should start with a number ranging 1-4")
}
## =====================
2024-02-07 20:57:11 +01:00
## Extracting the first string element in main entry
n1 <- stRoke::str_extract(df[, 1],"^[0-3]") |> as.numeric()
## Extracting the first string element in subentry
n2 <- stRoke::str_extract(df[, 2],"^[1-4]") |> as.numeric()
score <- c()
for (i in seq_along(n1)) {
ind1 <- match(n1[i],seq_along(pase_weights))
2024-02-07 20:57:11 +01:00
if (is.na(ind1)){
score[i] <- n1[i]
} else {
2024-02-07 20:57:11 +01:00
score[i] <- pase_weights[[ind1]][n2[i]] * pase_multip_26[x]
}
2024-02-07 20:57:11 +01:00
}
score
})
2024-02-07 20:57:11 +01:00
names(pase_score_26) <- paste0("pase_score_", names(pase_list[2:6]))
## PASE 7-9d
pase_multip_79 <- c(25, 25, 30, 36, 20, 35)
pase_score_79 <-
data.frame(t(t(
sapply(Reduce(cbind,pase_list[7:9]),function(j){
grepl("[Jj]a",j)
}) + 0 # short hand logic to numeric
) * pase_multip_79))
names(pase_score_79) <-
2024-02-07 20:57:11 +01:00
paste0("pase_score_", sub("pase","",names(pase_score_79)))
## PASE 10
## Completely ignores if 10b is not completed
pase_score_10 <- 21 * suppressWarnings(as.numeric(pase_list[[10]][[2]])) / 7
if (adjust_work){
# Only includes work time if 10b is != 1
pase_score_10[substr(pase_list[[10]][[3]],1,1) == "1"] <- 0
# Consequently consider "Not available" in 10b as incomplete
2024-02-07 20:57:11 +01:00
incompletes[ds[,21] %in% consider.missing & !incompletes & !is.na(incompletes)] <- TRUE
}
pase_score <- cbind(pase_score_26, pase_score_79, pase_score_10)
data.frame(
pase_score,
2024-02-07 20:57:11 +01:00
pase_score_sum = rowSums(pase_score, na.rm = TRUE),
pase_score_missings = missings,
pase_score_incompletes = incompletes
)
}