stRoke/R/mfi_calc.R

81 lines
2.3 KiB
R
Raw Normal View History

utils::globalVariables(c("ndx"))
#' Reverses relevant MFI subscores
2024-02-07 20:56:51 +01:00
#'
#' @param d data frame or tibble
#' @param var numeric vector of indices of columns to reverse
#'
#' @return data.frame or tibble depending on input
#'
#' @examples
#' # rep_len(sample(1:5),length.out = 100) |> matrix(ncol=10) |> multi_rev(2:4)
multi_rev <- function(d, var){
# Forcing and coercing to numeric
dm <- d |> as.matrix() |>
as.numeric()|>
matrix(ncol=ncol(d)) |>
data.frame()
# Reversing everything (fast enough not to subset)
dr <- range(dm,na.rm=TRUE) |> sum()-dm
# Inserting reversed scores in correct places
for (i in var){
dm[i] <- dr[i]
}
if (tibble::is_tibble(d)){
tibble::tibble(dm)
} else {
dm
}
}
#' MFI domain score calculator
#'
#' @param ds data set of MFI scores, 20 columns
#' @param reverse.vars variables/columns to reverse
#' @param reverse reverse scoring
#'
#' @return tibble of domain scores
#' @export
#'
#' @examples
#' mfi_mess <- data.frame(matrix(
#' sample(c(" 1. ", "2. -A", "3.", " 4 ", "5.", NA),200,replace=TRUE),ncol=20))
#' mfi_mess |> mfi_domains()
mfi_domains <-
function(ds,
reverse = TRUE,
reverse.vars = c(2, 5, 9, 10, 13, 14, 16, 17, 18, 19)) {
if(ncol(ds)!=20){
stop("The supplied dataset should only contain the 20 MFI subscores")}
# Subscore indexes
indexes <- list(
data.frame(grp="gen", ndx=c(1, 5, 12, 16)),
data.frame(grp="phy", ndx=c(2, 8, 14, 20)),
data.frame(grp="act", ndx=c(3, 6, 10, 17)),
data.frame(grp="mot", ndx=c(4, 9, 15, 18)),
data.frame(grp="men", ndx=c(7, 11, 13, 19))
) |> dplyr::bind_rows() |> dplyr::arrange(ndx)
# Removes padding and converts to numeric
ds_n <- ds |> dplyr::mutate_if(is.factor, as.character) |>
dplyr::mutate(dplyr::across(tidyselect::everything(),
# Removes everything but the leading alphanumeric character
# Data should be cleaned accordingly
~str_extract(d=.,pattern="[[:alnum:]]")))
# Assumes reverse scores are not correctly reversed
if (reverse){ds_n <- ds_n |> multi_rev(var=reverse.vars)}
# Domain wise summations
split.default(ds_n, factor(indexes$grp)) |>
lapply(function(x){
apply(x, MARGIN = 1, sum, na.ignore=FALSE)
}) |> dplyr::bind_cols()
}