stRoke/tests/testthat/test-ci_plot.R

66 lines
1.5 KiB
R
Raw Normal View History

# Unit Test - gpttools
2023-01-11 12:54:08 +01:00
test_that("ci_plot produces a valid plot, OLR", {
data(talos)
2023-01-12 13:44:29 +01:00
talos[, "mrs_1"] <- factor(talos[, "mrs_1"], ordered = TRUE)
testthat::expect_true(inherits(ci_plot(
ds = talos,
x = "rtreat",
y = "mrs_1",
vars = c("hypertension", "diabetes")
),
"ggplot"))
2023-01-11 12:54:08 +01:00
})
test_that("ci_plot produces a valid plot", {
data(talos)
2023-01-12 13:44:29 +01:00
talos[, "mrs_1"] <-
factor(ifelse(talos[, "mrs_1"] %in% c("0", "1"), 1, 2))
testthat::expect_true(inherits(ci_plot(
ds = talos,
x = "rtreat",
y = "mrs_1",
vars = c("hypertension", "diabetes")
),
"ggplot"))
})
2023-01-11 12:54:08 +01:00
test_that("ci_plot gives error if outcome is not factor", {
data(talos)
2023-01-12 13:44:29 +01:00
testthat::expect_error(ci_plot(
ds = talos,
x = "rtreat",
y = "mrs_1",
vars = c("hypertension", "diabetes")
))
2023-01-11 12:54:08 +01:00
})
test_that("ci_plot produces a valid plot", {
data(talos)
2023-01-12 13:44:29 +01:00
talos[, "mrs_1"] <-
factor(ifelse(talos[, "mrs_1"] %in% c("0", "1"), 1, 2))
testthat::expect_true(inherits(
ci_plot(
ds = talos,
x = "rtreat",
y = "mrs_1",
vars = c("hypertension", "diabetes"),
lbls = c("Intercept", "Placebo",
"Hypertension", "Diabetes")
),
"ggplot"
))
})
test_that("ci_plot produces a valid plot with method='model'", {
iris$ord<-factor(sample(1:3,size=nrow(iris),replace=TRUE),ordered=TRUE)
lm <- MASS::polr(ord~., data=iris, Hess=TRUE, method="logistic")
expect_true(inherits(
ci_plot(
ds = lm,
method = "model"
),
"ggplot"
))
})