mirror of
https://github.com/agdamsbo/daDoctoR.git
synced 2024-11-22 03:40:23 +01:00
166 lines
3.6 KiB
R
166 lines
3.6 KiB
R
#' A repeated regression function for change-in-estimate analysis
|
|
#'
|
|
#' For bivariate analyses.
|
|
#' @param y Effect meassure.
|
|
#' @param v1 Main variable in model
|
|
#' @param string String of columnnames from dataframe to include. Use dput().
|
|
#' @keywords change-in-estimate
|
|
#' @export
|
|
#' @examples
|
|
#' cie_test()
|
|
|
|
cie_test<-function(y,v1,string,data,logistic=FALSE,cut=0.1,v2=NULL,v3=NULL){
|
|
## Calculating variables, that should be included for a change in estimate analysis.
|
|
## v1-3 are possible locked variables, y is the outcome vector.
|
|
## String defines variables to test, and is provided as vector of variable names. Use dput().
|
|
## From "Modeling and variable selection in epidemiologic analysis." - S. Greenland, 1989.
|
|
|
|
require(broom)
|
|
|
|
d<-data
|
|
x<-select(d,one_of(c(string)))
|
|
if(logistic==FALSE){
|
|
if (is.factor(y)){stop("Some kind of error message would be nice, but y should not be a factor!")}
|
|
|
|
if (is.null(v2)&is.null(v3)){
|
|
|
|
e<-as.numeric(round(coef(lm(y~v1)),3))[1]
|
|
|
|
|
|
df<-data.frame(pred="base",b=e)
|
|
|
|
for(i in 1:ncol(x)){
|
|
|
|
m<-lm(y~v1+x[,i])
|
|
|
|
b<-as.numeric(round(coef(m),3))[1]
|
|
|
|
v<-x[,i]
|
|
|
|
pred<-paste(names(x)[i])
|
|
|
|
df<-rbind(df,cbind(pred,b))
|
|
}
|
|
t<-c(NA,ifelse(abs(e-as.numeric(df[-1,2]))>=(e*cut),"include","drop"))
|
|
df<-cbind(df,t)
|
|
}
|
|
|
|
if (!is.null(v2)&is.null(v3)){
|
|
|
|
e<-as.numeric(round(coef(lm(y~v1+v2)),3))[1]
|
|
|
|
df<-data.frame(pred="base",b=e)
|
|
|
|
for(i in 1:ncol(x)){
|
|
|
|
m<-lm(y~v1+v2+x[,i])
|
|
|
|
b<-as.numeric(round(coef(m),3))[1]
|
|
|
|
v<-x[,i]
|
|
|
|
pred<-paste(names(x)[i])
|
|
|
|
df<-rbind(df,cbind(pred,b))
|
|
}
|
|
t<-c(NA,ifelse(abs(e-as.numeric(df[-1,2]))>=(e*cut),"include","drop"))
|
|
df<-cbind(df,t)
|
|
}
|
|
|
|
if (!is.null(v2)&!is.null(v3)){
|
|
|
|
e<-as.numeric(round(coef(lm(y~v1+v2+v3)),3))[1]
|
|
|
|
df<-data.frame(pred="base",b=e)
|
|
|
|
for(i in 1:ncol(x)){
|
|
|
|
m<-lm(y~v1+v2+v3+x[,i])
|
|
|
|
b<-as.numeric(round(coef(m),3))[1]
|
|
|
|
v<-x[,i]
|
|
|
|
pred<-paste(names(x)[i])
|
|
|
|
df<-rbind(df,cbind(pred,b))
|
|
|
|
}
|
|
t<-c(NA,ifelse(abs(e-as.numeric(df[-1,2]))>=(e*cut),"include","drop"))
|
|
df<-cbind(df,t)
|
|
}}
|
|
|
|
if(logistic==TRUE){
|
|
|
|
if (!is.factor(y)){stop("Some kind of error message would be nice, but y should be a factor!")}
|
|
|
|
if (is.null(v2)&is.null(v3)){
|
|
|
|
e<-as.numeric(round(exp(coef(glm(y~v1,family=binomial()))),3))[1]
|
|
|
|
df<-data.frame(pred="base",b=e)
|
|
|
|
for(i in 1:ncol(x)){
|
|
|
|
m<-glm(y~v1+x[,i],family=binomial())
|
|
|
|
b<-as.numeric(round(exp(coef(m)),3))[1]
|
|
|
|
v<-x[,i]
|
|
|
|
pred<-paste(names(x)[i])
|
|
|
|
df<-rbind(df,cbind(pred,b))
|
|
}
|
|
t<-c(NA,ifelse(abs(e-as.numeric(df[-1,2]))>=(e*cut),"include","drop"))
|
|
df<-cbind(df,t)
|
|
}
|
|
|
|
if (!is.null(v2)&is.null(v3)){
|
|
|
|
e<-as.numeric(round(exp(coef(glm(y~v1+v2,family=binomial()))),3))[1]
|
|
|
|
df<-data.frame(pred="base",b=e)
|
|
|
|
for(i in 1:ncol(x)){
|
|
|
|
m<-glm(y~v1+v2+x[,i],family=binomial())
|
|
|
|
b<-as.numeric(round(exp(coef(m)),3))[1]
|
|
|
|
v<-x[,i]
|
|
|
|
pred<-paste(names(x)[i])
|
|
|
|
df<-rbind(df,cbind(pred,b))
|
|
}
|
|
t<-c(NA,ifelse(abs(e-as.numeric(df[-1,2]))>=(e*cut),"include","drop"))
|
|
df<-cbind(df,t)
|
|
}
|
|
|
|
if (!is.null(v2)&!is.null(v3)){
|
|
|
|
e<-as.numeric(round(exp(coef(glm(y~v1+v2+v3,family=binomial()))),3))[1]
|
|
|
|
df<-data.frame(pred="base",b=e)
|
|
|
|
for(i in 1:ncol(x)){
|
|
|
|
m<-glm(y~v1+v2+v3+x[,i],family=binomial())
|
|
|
|
b<-as.numeric(round(exp(coef(m)),3))[1]
|
|
|
|
v<-x[,i]
|
|
|
|
pred<-paste(names(x)[i])
|
|
|
|
df<-rbind(df,cbind(pred,b))
|
|
|
|
}
|
|
t<-c(NA,ifelse(abs(e-as.numeric(df[-1,2]))>=(e*cut),"include","drop"))
|
|
df<-cbind(df,t)
|
|
}}
|
|
|
|
return(df)
|
|
}
|