mirror of
https://github.com/agdamsbo/daDoctoR.git
synced 2024-11-22 03:40:23 +01:00
138 lines
4.9 KiB
R
138 lines
4.9 KiB
R
#' Print regression results according to STROBE
|
|
#'
|
|
#' Printable table of three dimensional regression analysis of group vs var for meas. By var. Includes p-values.
|
|
#' @param meas outcome meassure variable name in data-data.frame as a string. Can be numeric or factor. Result is calculated accordingly.
|
|
#' @param var binary exposure variable to compare against (active vs placebo). As string.
|
|
#' @param group groups to compare, as string.
|
|
#' @param adj variables to adjust for, as string.
|
|
#' @param data dataframe of data.
|
|
#' @param dec decimals for results, standard is set to 2. Mean and sd is dec-1.
|
|
#' @keywords strobe
|
|
#' @export
|
|
|
|
strobe_diff_byvar<-function(meas,var,group,adj,data,dec=2){
|
|
|
|
## meas: sdmt
|
|
## var: rtreat
|
|
## group: genotype
|
|
## for dichotome exposure variable (var)
|
|
|
|
d <- data
|
|
m <- d[, c(meas)]
|
|
v <- d[, c(var)]
|
|
g <- d[, c(group)]
|
|
ads <- d[, c(adj)]
|
|
dat <- data.frame(m, v, g, ads)
|
|
df <- data.frame(grp = c(NA, as.character(levels(g))))
|
|
if (!is.factor(m)) {
|
|
for (i in 1:length(levels(v))) {
|
|
grp <- levels(dat$v)[i]
|
|
di <- dat[dat$v == grp, ][, -2]
|
|
mod <- lm(m ~ g, data = di)
|
|
|
|
p <- coef(summary(mod))[2:length(levels(g)),4]
|
|
p<-ifelse(p<0.001,"<0.001",round(p,3))
|
|
p <- ifelse(p<=0.05|p=="<0.001",paste0("*",p),
|
|
ifelse(p>0.05&p<=0.1,paste0(".",p),p))
|
|
pv<-c("-",p)
|
|
|
|
co <- c("-", round(coef(mod)[-1], dec))
|
|
ci<-round(confint(mod),dec)[2:length(levels(g)),]
|
|
lo <- c("-", ci[,1])
|
|
up <- c("-", ci[,2])
|
|
ci <- paste0(co, " (", lo, " to ", up, ")")
|
|
|
|
amod <- lm(m ~ ., data = di)
|
|
|
|
pa <- coef(summary(amod))[2:length(levels(g)),4]
|
|
pa<-ifelse(pa<0.001,"<0.001",round(pa,3))
|
|
pa <- ifelse(pa<=0.05|pa=="<0.001",paste0("*",pa),
|
|
ifelse(pa>0.05&pa<=0.1,paste0(".",pa),pa))
|
|
apv<-c("-",pa)
|
|
|
|
aco <- c("-", round(coef(amod)[2:length(levels(g))],
|
|
dec))
|
|
aci<-round(confint(amod),dec)[2:length(levels(g)),]
|
|
alo <- c("-", aci[,1])
|
|
aup <- c("-", aci[,2])
|
|
aci <- paste0(aco, " (", alo, " to ", aup, ")")
|
|
nr <- c()
|
|
for (r in 1:length(levels(g))) {
|
|
vr <- levels(di$g)[r]
|
|
dr <- di[di$g == vr, ]
|
|
n <- as.numeric(nrow(dr[!is.na(dr$m), ]))
|
|
mean <- round(mean(dr$m, na.rm = TRUE), dec -
|
|
1)
|
|
sd <- round(sd(dr$m, na.rm = TRUE), dec - 1)
|
|
ms <- paste0(mean, " (", sd, ")")
|
|
nr <- c(nr, n, ms)
|
|
}
|
|
irl <- rbind(matrix(grp, ncol = 6), cbind(matrix(nr,
|
|
ncol = 2, byrow = TRUE), cbind(ci,pv, aci,apv)))
|
|
colnames(irl) <- c("N",
|
|
"Mean (SD)",
|
|
"Difference",
|
|
"p-value",
|
|
"Adjusted Difference",
|
|
"Adjusted p-value")
|
|
df <- cbind(df, irl)
|
|
}
|
|
}
|
|
if (is.factor(m)) {
|
|
for (i in 1:length(levels(v))) {
|
|
grp <- levels(dat$v)[i]
|
|
di <- dat[dat$v == grp, ][, -2]
|
|
mod <- glm(m ~ g, family = binomial(), data = di)
|
|
|
|
p <- coef(summary(mod))[2:length(levels(g)),4]
|
|
p<-ifelse(p<0.001,"<0.001",round(p,3))
|
|
p <- ifelse(p<=0.05|p=="<0.001",paste0("*",p),
|
|
ifelse(p>0.05&p<=0.1,paste0(".",p),p))
|
|
pv<-c("-",p)
|
|
|
|
co <- c("-", round(exp(coef(mod)[-1]), dec))
|
|
ci <- suppressMessages(round(exp(confint(mod)),dec))[2:length(levels(g)),]
|
|
lo <- c("-", ci[,1])
|
|
up <- c("-", ci[,2])
|
|
ci <- paste0(co, " (", lo, " to ", up, ")")
|
|
|
|
amod <- glm(m ~ ., family = binomial(), data = di)
|
|
|
|
pa <- coef(summary(amod))[2:length(levels(g)),4]
|
|
pa<-ifelse(pa<0.001,"<0.001",round(pa,3))
|
|
pa <- ifelse(pa<=0.05|pa=="<0.001",paste0("*",pa),
|
|
ifelse(pa>0.05&pa<=0.1,paste0(".",pa),pa))
|
|
apv<-c("-",pa)
|
|
|
|
aco <- c("-", suppressMessages(round(exp(coef(amod)[2:length(levels(g))]),
|
|
dec)))
|
|
aci <- suppressMessages(round(exp(confint(mod)),dec)[2:length(levels(g)),])
|
|
alo <- c("-", aci[,1])
|
|
aup <- c("-", aci[,2])
|
|
aci <- paste0(aco, " (", alo, " to ", aup, ")")
|
|
|
|
nr <- c()
|
|
for (r in 1:length(levels(g))) {
|
|
vr <- levels(di$g)[r]
|
|
dr <- di[di$g == vr, ]
|
|
n <- as.numeric(nrow(dr[!is.na(dr$m), ]))
|
|
nl <- levels(m)[2]
|
|
out <- nrow(dr[dr$m == nl & !is.na(dr$m), ])
|
|
pro <- round(out/n * 100, 0)
|
|
rt <- paste0(out, " (", pro, "%)")
|
|
nr <- c(nr, n, rt)
|
|
}
|
|
irl <- rbind(matrix(grp, ncol = 4), cbind(matrix(nr,
|
|
ncol = 2, byrow = TRUE), cbind(ci,pv, aci,apv)))
|
|
colnames(irl) <- c("N",
|
|
paste0("N.", nl),
|
|
"OR",
|
|
"p-value",
|
|
"Adjusted OR",
|
|
"Adjusted p-value")
|
|
df <- cbind(df, irl)
|
|
}
|
|
}
|
|
return(df)
|
|
}
|