mirror of
https://github.com/agdamsbo/daDoctoR.git
synced 2024-11-25 05:01:54 +01:00
104 lines
2.8 KiB
R
104 lines
2.8 KiB
R
#' A repeated logistic regression function
|
|
#'
|
|
#' @description For bivariate analyses. The confint() function is rather slow, causing the whole function to hang when including many predictors and calculating the ORs with CI.
|
|
#' @param meas Effect meassure. Input as c() of columnnames, use dput().
|
|
#' @param vars variables in model. Input as c() of columnnames, use dput().
|
|
#' @param string variables to test. Input as c() of columnnames, use dput().
|
|
#' @param ci flag to get results as OR with 95% confidence interval.
|
|
#' @param data data frame to pull variables from.
|
|
#'
|
|
#' @keywords logistic regression
|
|
#'
|
|
#' @examples
|
|
#' l<-5
|
|
#' y<-factor(rep(c("a","b"),l))
|
|
#' x<-rnorm(length(y), mean=50, sd=10)
|
|
#' v1<-factor(rep(c("r","s"),length(y)/2))
|
|
#' v2<-sample(1:100, length(y), replace=FALSE)
|
|
#' v3<-as.numeric(1:length(y))
|
|
#' d<-data.frame(y,x,v1,v2,v3)
|
|
#' preds<-dput(names(d)[3:ncol(d)])
|
|
#' rep_glm(meas="y",vars="x",string=preds,ci=FALSE,data=df)
|
|
#'
|
|
#' @export
|
|
#'
|
|
|
|
rep_glm<-function(meas,vars,string,ci=FALSE,data){
|
|
## x is data.frame of predictors, y is vector of an aoutcome as a factor
|
|
## output is returned as coefficient, or if or=TRUE as OR with 95 % CI.
|
|
##
|
|
|
|
require(broom)
|
|
|
|
d<-data
|
|
x<-data.frame(d[,c(string)])
|
|
v<-data.frame(d[,c(vars)])
|
|
y<-d[,c(meas)]
|
|
dt<-cbind(y,v)
|
|
m1<-length(coef(glm(y~.,family = binomial(),data = dt)))
|
|
|
|
if (!is.factor(y)){stop("Some kind of error message would be nice, but y should be a factor!")}
|
|
|
|
if (ci==TRUE){
|
|
|
|
df<-data.frame(matrix(ncol = 3))
|
|
names(df)<-c("pred","or_ci","pv")
|
|
|
|
for(i in 1:ncol(x)){
|
|
dat<-cbind(dt,x[,i])
|
|
m<-glm(y~.,family = binomial(),data=dat)
|
|
|
|
l<-suppressMessages(round(exp(confint(m))[-c(1:m1),1],2))
|
|
u<-suppressMessages(round(exp(confint(m))[-c(1:m1),2],2))
|
|
or<-round(exp(coef(m))[-c(1:m1)],2)
|
|
or_ci<-paste0(or," (",l," to ",u,")")
|
|
pv<-round(tidy(m)$p.value[-c(1:m1)],3)
|
|
x1<-x[,i]
|
|
|
|
if (is.factor(x1)){
|
|
pred<-paste(names(x)[i],levels(x1)[-1],sep = "_")}
|
|
|
|
else {pred<-names(x)[i]}
|
|
|
|
df<-rbind(df,cbind(pred,or_ci,pv))}}
|
|
|
|
if (ci==FALSE){
|
|
|
|
df<-data.frame(matrix(ncol = 3))
|
|
names(df)<-c("pred","b","pv")
|
|
|
|
for(i in 1:ncol(x)){
|
|
dat<-cbind(dt,x[,i])
|
|
|
|
m<-glm(y~.,family = binomial(),data=dat)
|
|
|
|
b<-round(coef(m)[-c(1:m1)],3)
|
|
|
|
pv<-round(tidy(m)$p.value[-c(1:m1)],3)
|
|
|
|
x1<-x[,i]
|
|
|
|
if (is.factor(x1)){
|
|
pred<-paste(names(x)[i],levels(x1)[-1],sep = "_")
|
|
}
|
|
|
|
else {pred<-names(x)[i]}
|
|
|
|
df<-rbind(df,cbind(pred,b,pv))
|
|
|
|
}}
|
|
|
|
pa<-as.numeric(df[,3])
|
|
pa<-ifelse(pa<0.001,"<0.001",pa)
|
|
|
|
t <- ifelse(pa<=0.1|pa=="<0.001","include","drop")
|
|
|
|
pa <- ifelse(pa<=0.05|pa=="<0.001",paste0("*",pa),
|
|
ifelse(pa>0.05&pa<=0.1,paste0(".",pa),pa))
|
|
|
|
r<-data.frame(df[,1:2],pa,t)[-1,]
|
|
|
|
return(r)
|
|
}
|
|
|