mirror of
https://github.com/agdamsbo/daDoctoR.git
synced 2024-11-21 19:30:22 +01:00
361 lines
10 KiB
R
361 lines
10 KiB
R
#' Regression model of predictors according to STROBE, bi- and multivariate.
|
|
#'
|
|
#' Printable table of regression model according to STROBE for linear or binary outcome-variables.
|
|
#' Includes borth bivariate and multivariate in the same table.
|
|
#' Output is a list, with the first item being the main "output" as a dataframe.
|
|
#' Automatically uses logistic regression model for dichotomous outcome variable and linear regression model for continous outcome variable. Linear regression will give estimated adjusted true mean in list.
|
|
#' @param meas binary outcome meassure variable, column name in data.frame as a string. Can be numeric or factor. Result is calculated accordingly.
|
|
#' @param adj variables to adjust for, as string.
|
|
#' @param data dataframe of data.
|
|
#' @param dec decimals for results, standard is set to 2. Mean and sd is dec-1.
|
|
#' @param n.by.adj flag to indicate wether to count number of patients in adjusted model or overall for outcome meassure not NA.
|
|
#' @param p.val flag to include p-values in table, set to FALSE as standard.
|
|
#' @keywords logistic
|
|
#' @export
|
|
|
|
strobe_pred<-function(meas,adj,data,dec=2,n.by.adj=FALSE,p.val=FALSE){
|
|
## Ønskeliste:
|
|
##
|
|
## - Tæl selv antal a NA'er
|
|
|
|
require(dplyr)
|
|
|
|
d<-data
|
|
m<-d[,c(meas)]
|
|
|
|
ads<-d[,c(adj)]
|
|
|
|
if(is.factor(m)){
|
|
|
|
## Crude ORs
|
|
|
|
dfcr<-data.frame(matrix(NA,ncol = 3))
|
|
names(dfcr)<-c("pred","or_ci","pv")
|
|
n.mn<-c()
|
|
|
|
nref<-c()
|
|
|
|
for(i in 1:ncol(ads)){
|
|
dat<-data.frame(m=m,ads[,i])
|
|
names(dat)<-c("m",names(ads)[i])
|
|
mn<-glm(m~.,family = binomial(),data=dat)
|
|
n.mn<-c(n.mn,nrow(mn$model))
|
|
|
|
suppressMessages(ci<-exp(confint(mn)))
|
|
l<-round(ci[-1,1],dec)
|
|
u<-round(ci[-1,2],dec)
|
|
or<-round(exp(coef(mn))[-1],dec)
|
|
or_ci<-paste0(or," (",l," to ",u,")")
|
|
pv<-round(tidy(mn)$p.value[-1],dec+1)
|
|
x1<-ads[,i]
|
|
|
|
if (is.factor(x1)){
|
|
pred<-paste0(names(ads)[i],levels(x1)[-1])
|
|
}
|
|
|
|
else {
|
|
pred<-names(ads)[i]
|
|
}
|
|
|
|
dfcr<-rbind(dfcr,cbind(pred,or_ci,pv))
|
|
}
|
|
|
|
|
|
## Mutually adjusted ORs
|
|
|
|
dat<-data.frame(m=m,ads)
|
|
ma <- glm(m ~ .,family = binomial(), data = dat)
|
|
miss<-length(ma$na.action)
|
|
|
|
actable <- coef(summary(ma))
|
|
pa <- actable[,4]
|
|
pa<-ifelse(pa<0.001,"<0.001",round(pa,3))
|
|
pa <- ifelse(pa<=0.05|pa=="<0.001",paste0("*",pa),
|
|
ifelse(pa>0.05&pa<=0.1,paste0(".",pa),pa))
|
|
|
|
apv<-pa[1:length(coef(ma))]
|
|
|
|
aco<-round(exp(coef(ma)),dec)
|
|
suppressMessages(aci<-round(exp(confint(ma)),dec))
|
|
alo<-aci[,1]
|
|
aup<-aci[,2]
|
|
aor_ci<-paste0(aco," (",alo," to ",aup,")")
|
|
|
|
# names(dat2)<-c(var,names(ads))
|
|
|
|
nq<-c()
|
|
|
|
if (n.by.adj==TRUE){
|
|
dat2<-ma$model[,-1]
|
|
for (i in 1:ncol(dat2)){
|
|
if (is.factor(dat2[,i])){
|
|
vec<-dat2[,i]
|
|
ns<-names(dat2)[i]
|
|
for (r in 1:length(levels(vec))){
|
|
vr<-levels(vec)[r]
|
|
n<-as.numeric(length(vec[vec==vr&!is.na(vec)]))
|
|
nall<-as.numeric(length(dat2[,c(ns)]))
|
|
n.meas<-nall
|
|
nl<-paste0(ns,levels(vec)[r])
|
|
pro<-round(n/nall*100,0)
|
|
rt<-paste0(n," (",pro,"%)")
|
|
nq<-rbind(nq,cbind(nl,rt))
|
|
}}
|
|
if (!is.factor(dat2[,i])){
|
|
num<-dat2[,i]
|
|
nl<-names(dat2)[i]
|
|
n<-as.numeric(length(num[!is.na(num)]))
|
|
nall<-as.numeric(nrow(dat2))
|
|
n.meas<-nall
|
|
pro<-round(n/nall*100,0)
|
|
rt<-paste0(n," (",pro,"%)")
|
|
nq<-rbind(nq,cbind(nl,rt))
|
|
}}}
|
|
|
|
else {
|
|
dat2<-dat[!is.na(dat[,1]),][,-1]
|
|
n.meas<-nrow(dat2)
|
|
for (i in 1:ncol(dat2)){
|
|
if (is.factor(dat2[,i])){
|
|
vec<-dat2[,i]
|
|
ns<-names(dat2)[i]
|
|
for (r in 1:length(levels(vec))){
|
|
vr<-levels(vec)[r]
|
|
n<-as.numeric(length(vec[vec==vr&!is.na(vec)]))
|
|
nall<-as.numeric(n.mn[i])
|
|
nl<-paste0(ns,levels(vec)[r])
|
|
pro<-round(n/nall*100,0)
|
|
rt<-paste0(n," (",pro,"%)")
|
|
nq<-rbind(nq,cbind(nl,rt))
|
|
}}
|
|
if (!is.factor(dat2[,i])){
|
|
num<-dat2[,i]
|
|
nl<-names(dat2)[i]
|
|
n<-as.numeric(length(num[!is.na(num)]))
|
|
nall<-as.numeric(n.meas)
|
|
pro<-round(n/nall*100,0)
|
|
rt<-paste0(n," (",pro,"%)")
|
|
nq<-rbind(nq,cbind(nl,rt))
|
|
}}}
|
|
|
|
rnames<-c()
|
|
for (i in 1:ncol(dat2)){
|
|
if (is.factor(dat2[,i])){
|
|
rnames<-c(rnames,names(dat2)[i],paste0(names(dat2)[i],levels(dat2[,i])))
|
|
}
|
|
if (!is.factor(dat2[,i])){
|
|
rnames<-c(rnames,paste0(names(dat2)[i],".all"),names(dat2)[i])
|
|
}
|
|
}
|
|
res<-cbind(aor_ci,apv)
|
|
rest<-data.frame(names=row.names(res),res,stringsAsFactors = F)
|
|
|
|
numb<-data.frame(names=nq[,c("nl")],N=nq[,c("rt")],stringsAsFactors = F)
|
|
namt<-data.frame(names=rnames,stringsAsFactors = F)
|
|
|
|
coll<-left_join(left_join(namt,numb,by="names"),rest,by="names")
|
|
|
|
header<-data.frame(matrix(paste0("Chance of ",meas," is ",levels(m)[-1]),ncol = ncol(coll)),stringsAsFactors = F)
|
|
names(header)<-names(coll)
|
|
|
|
df<-data.frame(rbind(header,coll),stringsAsFactors = F)
|
|
|
|
names(dfcr)[1]<-c("names")
|
|
|
|
suppressWarnings(re<-left_join(df,dfcr,by="names"))
|
|
|
|
rona<-c()
|
|
for (i in 1:length(ads)){
|
|
if (is.factor(ads[,i])){
|
|
rona<-c(rona,names(ads[i]),levels(ads[,i]))}
|
|
if (!is.factor(ads[,i])){
|
|
rona<-c(rona,names(ads[i]),"Per unit increase")
|
|
}
|
|
}
|
|
|
|
if (p.val==TRUE){
|
|
ref<-data.frame(c(NA,rona),re[,2],re[,5],re[,6],re[,3],re[,4])
|
|
|
|
names(ref)<-c("Variable",paste0("N=",n.meas),"Crude OR (95 % CI)","p-value","Mutually adjusted OR (95 % CI)","A p-value")
|
|
}
|
|
else{
|
|
ref<-data.frame(c(NA,rona),re[,2],re[,5],re[,3])
|
|
|
|
names(ref)<-c("Variable",paste0("N=",n.meas),"Crude OR (95 % CI)","Mutually adjusted OR (95 % CI)")
|
|
}
|
|
|
|
ls<-list(tbl=ref,miss,n.meas,nrow(d))
|
|
names(ls)<-c("Printable table","Deleted due to missingness in adjusted analysis","Number of outcome observations","Length of dataframe")
|
|
}
|
|
|
|
if(!is.factor(m)){
|
|
|
|
dfcr<-data.frame(matrix(NA,ncol = 3))
|
|
names(dfcr)<-c("pred","dif_ci","pv")
|
|
n.mn<-c()
|
|
|
|
nref<-c()
|
|
|
|
for(i in 1:ncol(ads)){
|
|
dat<-data.frame(m=m,ads[,i])
|
|
names(dat)<-c("m",names(ads)[i])
|
|
mn<-lm(m~.,data=dat)
|
|
n.mn<-c(n.mn,nrow(mn$model))
|
|
|
|
suppressMessages(ci<-confint(mn))
|
|
l<-round(ci[-1,1],dec)
|
|
u<-round(ci[-1,2],dec)
|
|
dif<-round(coef(mn)[-1],dec)
|
|
dif_ci<-paste0(dif," (",l," to ",u,")")
|
|
pv<-round(tidy(mn)$p.value[-1],dec+1)
|
|
pv<-ifelse(pv<0.001,"<0.001",round(pv,3))
|
|
pv <- ifelse(pv<=0.05|pv=="<0.001",paste0("*",pv),
|
|
ifelse(pv>0.05&pv<=0.1,paste0(".",pv),pv))
|
|
|
|
x1<-ads[,i]
|
|
|
|
if (is.factor(x1)){
|
|
pred<-paste0(names(ads)[i],levels(x1)[-1])
|
|
}
|
|
|
|
else {
|
|
pred<-names(ads)[i]
|
|
}
|
|
|
|
dfcr<-rbind(dfcr,cbind(pred,dif_ci,pv))
|
|
}
|
|
|
|
## Mutually adjusted ORs
|
|
|
|
dat<-data.frame(m=m,ads)
|
|
ma <- lm(m ~ ., data = dat)
|
|
miss<-length(ma$na.action)
|
|
|
|
|
|
actable <- coef(summary(ma))
|
|
pa <- actable[,4]
|
|
pa<-ifelse(pa<0.001,"<0.001",round(pa,3))
|
|
pa <- ifelse(pa<=0.05|pa=="<0.001",paste0("*",pa),
|
|
ifelse(pa>0.05&pa<=0.1,paste0(".",pa),pa))
|
|
|
|
apv<-pa[1:length(coef(ma))]
|
|
|
|
aco<-round(coef(ma),dec)
|
|
suppressMessages(aci<-round(confint(ma),dec))
|
|
alo<-aci[,1]
|
|
aup<-aci[,2]
|
|
amean_ci<-paste0(aco," (",alo," to ",aup,")")
|
|
|
|
mean_est<-amean_ci[[1]]
|
|
|
|
|
|
nq<-c()
|
|
|
|
if (n.by.adj==TRUE){
|
|
dat2<-ma$model[,-1]
|
|
for (i in 1:ncol(dat2)){
|
|
if (is.factor(dat2[,i])){
|
|
vec<-dat2[,i]
|
|
ns<-names(dat2)[i]
|
|
for (r in 1:length(levels(vec))){
|
|
vr<-levels(vec)[r]
|
|
n<-as.numeric(length(vec[vec==vr&!is.na(vec)]))
|
|
nall<-as.numeric(length(dat2[,c(ns)]))
|
|
n.meas<-nall
|
|
nl<-paste0(ns,levels(vec)[r])
|
|
pro<-round(n/nall*100,0)
|
|
rt<-paste0(n," (",pro,"%)")
|
|
nq<-rbind(nq,cbind(nl,rt))
|
|
}}
|
|
if (!is.factor(dat2[,i])){
|
|
num<-dat2[,i]
|
|
nl<-names(dat2)[i]
|
|
n<-as.numeric(length(num[!is.na(num)]))
|
|
nall<-as.numeric(nrow(dat2))
|
|
n.meas<-nall
|
|
pro<-round(n/nall*100,0)
|
|
rt<-paste0(n," (",pro,"%)")
|
|
nq<-rbind(nq,cbind(nl,rt))
|
|
}}}
|
|
|
|
else {
|
|
dat2<-dat[!is.na(dat[,1]),][,-1]
|
|
n.meas<-nrow(dat2)
|
|
for (i in 1:ncol(dat2)){
|
|
if (is.factor(dat2[,i])){
|
|
vec<-dat2[,i]
|
|
ns<-names(dat2)[i]
|
|
for (r in 1:length(levels(vec))){
|
|
vr<-levels(vec)[r]
|
|
n<-as.numeric(length(vec[vec==vr&!is.na(vec)]))
|
|
nall<-as.numeric(n.mn[i])
|
|
nl<-paste0(ns,levels(vec)[r])
|
|
pro<-round(n/nall*100,0)
|
|
rt<-paste0(n," (",pro,"%)")
|
|
nq<-rbind(nq,cbind(nl,rt))
|
|
}}
|
|
if (!is.factor(dat2[,i])){
|
|
num<-dat2[,i]
|
|
nl<-names(dat2)[i]
|
|
n<-as.numeric(length(num[!is.na(num)]))
|
|
nall<-as.numeric(n.meas)
|
|
pro<-round(n/nall*100,0)
|
|
rt<-paste0(n," (",pro,"%)")
|
|
nq<-rbind(nq,cbind(nl,rt))
|
|
}}}
|
|
|
|
|
|
rnames<-c()
|
|
for (i in 1:ncol(dat2)){
|
|
if (is.factor(dat2[,i])){
|
|
rnames<-c(rnames,names(dat2)[i],paste0(names(dat2)[i],levels(dat2[,i])))
|
|
}
|
|
if (!is.factor(dat2[,i])){
|
|
rnames<-c(rnames,paste0(names(dat2)[i],".all"),names(dat2)[i])
|
|
}
|
|
}
|
|
res<-cbind(amean_ci,apv)
|
|
rest<-data.frame(names=row.names(res),res,stringsAsFactors = F)
|
|
|
|
numb<-data.frame(names=nq[,c("nl")],N=nq[,c("rt")],stringsAsFactors = F)
|
|
namt<-data.frame(names=rnames,stringsAsFactors = F)
|
|
|
|
coll<-left_join(left_join(namt,numb,by="names"),rest,by="names")
|
|
|
|
header<-data.frame(matrix("Adjusted",ncol = ncol(coll)),stringsAsFactors = F)
|
|
names(header)<-names(coll)
|
|
|
|
df<-data.frame(rbind(header,coll),stringsAsFactors = F)
|
|
|
|
names(dfcr)[1]<-c("names")
|
|
|
|
suppressWarnings(re<-left_join(df,dfcr,by="names"))
|
|
|
|
rona<-c()
|
|
for (i in 1:length(ads)){
|
|
if (is.factor(ads[,i])){
|
|
rona<-c(rona,names(ads[i]),levels(ads[,i]))}
|
|
if (!is.factor(ads[,i])){
|
|
rona<-c(rona,names(ads[i]),"Per unit increase")
|
|
}
|
|
}
|
|
|
|
if (p.val==TRUE){
|
|
ref<-data.frame(c(NA,rona),re[,2],re[,5],re[,6],re[,3],re[,4])
|
|
|
|
names(ref)<-c("Variable",paste0("N=",n.meas),"Difference (95 % CI)","p-value","Mutually adjusted difference (95 % CI)","A p-value")
|
|
}
|
|
else{
|
|
ref<-data.frame(c(NA,rona),re[,2],re[,5],re[,3])
|
|
|
|
names(ref)<-c("Variable",paste0("N=",n.meas),"Difference (95 % CI)","Mutually adjusted difference (95 % CI)")
|
|
}
|
|
|
|
ls<-list(tbl=ref,miss,n.meas,nrow(d),mean_est)
|
|
names(ls)<-c("Printable table","Deleted due to missingness in adjusted analysis","Number of outcome observations","Length of dataframe","Estimated true mean (95 % CI) in adjusted analysis")
|
|
|
|
}
|
|
|
|
return(ls)
|
|
}
|