daDoctoR/R/strobe_olr.R
2019-11-12 14:12:27 +01:00

92 lines
2.5 KiB
R

#' Print ordinal logistic regression results according to STROBE
#'
#' Printable table of ordinal logistic regression analysis oaccording to STROBE. Uses polr() funtion of the MASS-package.
#' @param meas outcome meassure variable name in data-data.frame as a string. Can be numeric or factor. Result is calculated accordingly.
#' @param vars variables to compare against. As vector of columnnames.
#' @param data dataframe of data.
#' @param dec decimals for results, standard is set to 2. Mean and sd is dec-1.
#' @keywords olr
#' @export
strobe_olr<-function(meas,vars,data,dec=2){
require(MASS)
require(dplyr)
d<-data
m<-d[,c(meas)]
v<-d[,c(vars)]
dat<-data.frame(m,v)
ma <- polr(m ~ ., data = dat, Hess=TRUE)
actable <- coef(summary(ma))
pa <- pnorm(abs(actable[, "t value"]), lower.tail = FALSE) * 2
pa<-ifelse(pa<0.001,"<0.001",round(pa,3))
pa <- ifelse(pa<=0.05|pa=="<0.001",paste0("*",pa),
ifelse(pa>0.05&pa<=0.1,paste0(".",pa),pa))
apv<-pa[1:length(coef(ma))]
aco<-round(exp(coef(ma)),dec)
aci<-round(exp(confint(ma)),dec)
alo<-aci[,1]
aup<-aci[,2]
aor_ci<-paste0(aco," (",alo," to ",aup,")")
dat2<-ma$model[,-1]
# names(dat2)<-c(var,names(ads))
nq<-c()
for (i in 1:ncol(dat2)){
if (is.factor(dat2[,i])){
vec<-dat2[,i]
ns<-names(dat2)[i]
for (r in 1:length(levels(vec))){
vr<-levels(vec)[r]
dr<-vec[vec==vr]
n<-as.numeric(length(dr))
nall<-as.numeric(nrow(dat2))
nl<-paste0(ns,levels(vec)[r])
pro<-round(n/nall*100,0)
rt<-paste0(n," (",pro,"%)")
nq<-rbind(nq,cbind(nl,rt))
}
}
if (!is.factor(dat2[,i])){
num<-dat2[,i]
ns<-names(dat2)[i]
n<-as.numeric(nrow(dat2))
nall<-as.numeric(nrow(dat2))
pro<-round(n/nall*100,0)
rt<-paste0(n," (",pro,"%)")
nq<-rbind(nq,cbind(ns,rt))
}
}
rnames<-c()
for (i in 1:ncol(dat2)){
if (is.factor(dat2[,i])){
rnames<-c(rnames,names(dat2)[i],paste0(names(dat2)[i],levels(dat2[,i])))
}
if (!is.factor(dat2[,i])){
rnames<-c(rnames,paste0(names(dat2)[i],".all"),names(dat2)[i])
}
}
res<-cbind(aor_ci,apv)
rest<-data.frame(names=row.names(res),res,stringsAsFactors = F)
numb<-data.frame(names=nq[,c("nl")],N=nq[,c("rt")],stringsAsFactors = F)
namt<-data.frame(names=rnames,stringsAsFactors = F)
coll<-left_join(left_join(namt,numb,by="names"),rest,by="names")
df<-data.frame(coll)
names(df)<-c("Variable","N","OR (95 % CI)","p value")
return(df)
}