daDoctoR/R/rep_lm.R
agdamsbo 7f1822f867 u
2018-10-11 15:39:02 +02:00

153 lines
3.8 KiB
R

#' A repeated linear regression function
#'
#' For bivariate analyses, to determine which variables to include in adjusted model.
#' @param meas Effect meassure. Input as c() of columnnames, use dput().
#' @param vars variables in model. Input as c() of columnnames, use dput().
#' @param string variables to test. Input as c() of columnnames, use dput().
#' @param ci flag to get results as OR with 95% confidence interval.
#' @param fixed.var flag to set "vars" as fixed in the model. When FALSE, then true bivariate linear regression is performed.
#' @param data data frame to pull variables from.
#' @keywords linear
#' @export
#' @examples
#' rep_lm()
rep_lm<-function(meas,vars,string,ci=FALSE,data,fixed.var=FALSE){
require(broom)
y<-data[,c(meas)]
if(is.factor(y)){stop("y is factor")}
if (fixed.var==FALSE){
d<-data
x<-data.frame(d[,c(vars,string)])
y<-d[,c(meas)]
names(x)<-c(vars,string)
if (ci==TRUE){
df<-data.frame(matrix(NA,ncol = 3))
names(df)<-c("pred","coef_ci","pv")
for(i in 1:ncol(x)){
dat<-data.frame(y=y,x[,i])
names(dat)<-c("y",names(x)[i])
m<-lm(y~.,data=dat)
ci<-suppressMessages(confint(m))
l<-round(ci[-1,1],2)
u<-round(ci[-1,2],2)
or<-round(coef(m)[-1],2)
coef_ci<-paste0(or," (",l," to ",u,")")
pv<-round(tidy(m)$p.value[-1],3)
x1<-x[,i]
if (is.factor(x1)){
pred<-paste(names(x)[i],levels(x1)[-1],sep = "_")
}
else {pred<-names(x)[i]}
df<-rbind(df,cbind(pred,coef_ci,pv))
}
}
else {
df<-data.frame(matrix(NA,ncol = 3))
names(df)<-c("pred","b","pv")
for(i in 1:ncol(x)){
dat<-data.frame(y=y,x[,i])
names(dat)<-c("y",names(x)[i])
m<-lm(y~.,data=dat)
b<-round(coef(m)[-1],3)
pv<-round(tidy(m)$p.value[-1],3)
x1<-x[,i]
if (is.factor(x1)){
pred<-paste(names(x)[i],levels(x1)[-1],sep = "_")
}
else {pred<-names(x)[i]}
df<-rbind(df,cbind(pred,b,pv))
}}
pa<-as.numeric(df[,3])
t <- ifelse(pa<=0.1,"include","drop")
pa<-ifelse(pa<0.001,"<0.001",pa)
pa <- ifelse(pa<=0.05|pa=="<0.001",paste0("*",pa),
ifelse(pa>0.05&pa<=0.1,paste0(".",pa),pa))
r<-data.frame(df[,1:2],pa,t)[-1,]
}
if (fixed.var==TRUE){
d<-data
x<-data.frame(d[,c(string)])
v<-data.frame(d[,c(vars)])
y<-d[,c(meas)]
dt<-cbind(y=y,v)
m1<-length(coef(lm(y~.,data = dt)))
names(v)<-c(vars)
if (ci==TRUE){
df<-data.frame(matrix(NA,ncol = 3))
names(df)<-c("pred","coef_ci","pv")
for(i in 1:ncol(x)){
dat<-cbind(dt,x[,i])
m<-lm(y~.,data=dat)
ci<-suppressMessages(confint(m))
l<-round(ci[-c(1:m1),1],2)
u<-round(ci[-c(1:m1),2],2)
or<-round(coef(m)[-c(1:m1)],2)
coef_ci<-paste0(or," (",l," to ",u,")")
pv<-round(tidy(m)$p.value[-c(1:m1)],3)
x1<-x[,i]
if (is.factor(x1)){
pred<-paste(names(x)[i],levels(x1)[-1],sep = "_")}
else {pred<-names(x)[i]}
df<-rbind(df,cbind(pred,coef_ci,pv))}}
else {
df<-data.frame(matrix(NA,ncol = 3))
names(df)<-c("pred","b","pv")
for(i in 1:ncol(x)){
dat<-cbind(dt,x[,i])
m<-lm(y~.,data=dat)
b<-round(coef(m)[-c(1:m1)],3)
pv<-round(tidy(m)$p.value[-c(1:m1)],3)
x1<-x[,i]
if (is.factor(x1)){
pred<-paste(names(x)[i],levels(x1)[-1],sep = "_")
}
else {pred<-names(x)[i]}
df<-rbind(df,cbind(pred,b,pv))
}}
pa<-as.numeric(df[,3])
t <- ifelse(pa<=0.1,"include","drop")
pa<-ifelse(pa<0.001,"<0.001",pa)
pa <- ifelse(pa<=0.05|pa=="<0.001",paste0("*",pa),
ifelse(pa>0.05&pa<=0.1,paste0(".",pa),pa))
r<-data.frame(df[,1:2],pa,t)[-1,]
}
return(r)
}