daDoctoR/R/strobe_diff_byvar.R
2019-01-09 11:56:58 +01:00

113 lines
3.3 KiB
R

#' Print regression results according to STROBE
#'
#' Printable table of three dimensional regression analysis of group vs var for meas. By var.
#' @param meas outcome meassure variable name in data-data.frame as a string. Can be numeric or factor. Result is calculated accordingly.
#' @param var binary exposure variable to compare against (active vs placebo). As string.
#' @param groups groups to compare, as string.
#' @param adj variables to adjust for, as string.
#' @param data dataframe of data.
#' @param dec decimals for results, standard is set to 2. Mean and sd is dec-1.
#' @keywords strobe
#' @export
#' @examples
#' strobe_diff_byvar()
strobe_diff_byvar<-function(meas,var,group,adj,data,dec=2){
## Wishlist:
## -fix confint()
## meas: sdmt
## var: rtreat
## group: genotype
## for dichotome exposure variable (var)
d<-data
m<-d[,c(meas)]
v<-d[,c(var)]
g<-d[,c(group)]
ads<-d[,c(adj)]
dat<-data.frame(m,v,g,ads)
df<-data.frame(grp=c(NA,as.character(levels(g))))
if(!is.factor(m)){
for (i in 1:length(levels(v))){
grp<-levels(dat$v)[i]
di<-dat[dat$v==grp,][,-2]
mod<-lm(m~g,data=di)
co<-c("-",round(coef(mod)[-1],dec))
lo<-c("-",round(confint(mod)[-1,1],dec))
up<-c("-",round(confint(mod)[-1,2],dec))
ci<-paste0(co," (",lo," to ",up,")")
amod<-lm(m~.,data=di)
aco<-c("-",round(coef(amod)[2:length(levels(g))],dec))
alo<-c("-",round(confint(amod)[2:length(levels(g)),1],dec))
aup<-c("-",round(confint(amod)[2:length(levels(g)),2],dec))
aci<-paste0(aco," (",alo," to ",aup,")")
nr<-c()
for (r in 1:length(levels(g))){
vr<-levels(di$g)[r]
dr<-di[di$g==vr,]
n<-as.numeric(nrow(dr[!is.na(dr$m),]))
mean<-round(mean(dr$m,na.rm = TRUE),dec-1)
sd<-round(sd(dr$m,na.rm = TRUE),dec-1)
ms<-paste0(mean," (",sd,")")
nr<-c(nr,n,ms)
}
irl<-rbind(matrix(grp,ncol=4),cbind(matrix(nr,ncol=2,byrow = TRUE),cbind(ci,aci)))
colnames(irl)<-c("N","Mean (SD)","Difference","Adjusted Difference")
df<-cbind(df,irl)
}}
if(is.factor(m)){
for (i in 1:length(levels(v))){
grp<-levels(dat$v)[i]
di<-dat[dat$v==grp,][,-2]
mod<-glm(m~g,family=binomial(),data=di)
co<-c("-",round(exp(coef(mod)[-1]),dec))
lo<-c("-",round(exp(confint(mod)[-1,1]),dec))
up<-c("-",round(exp(confint(mod)[-1,2]),dec))
ci<-paste0(co," (",lo," to ",up,")")
amod<-glm(m~.,family=binomial(),data=di)
aco<-c("-",suppressMessages(round(exp(coef(amod)[2:length(levels(g))]),dec)))
alo<-c("-",suppressMessages(round(exp(confint(amod)[2:length(levels(g)),1]),dec)))
aup<-c("-",suppressMessages(round(exp(confint(amod)[2:length(levels(g)),2]),dec)))
aci<-paste0(aco," (",alo," to ",aup,")")
nr<-c()
for (r in 1:length(levels(g))){
vr<-levels(di$g)[r]
dr<-di[di$g==vr,]
n<-as.numeric(nrow(dr[!is.na(dr$m),]))
nl<-levels(m)[2]
out<-nrow(dr[dr$m==nl&!is.na(dr$m),])
pro<-round(out/n*100,0)
rt<-paste0(out," (",pro,"%)")
nr<-c(nr,n,rt)
}
irl<-rbind(matrix(grp,ncol=4),cbind(matrix(nr,ncol=2,byrow = TRUE),cbind(ci,aci)))
colnames(irl)<-c("N",paste0("N.",nl),"OR","Adjusted OR")
df<-cbind(df,irl)
}}
return(df)
}