#' A repeated linear regression function #' #' For bivariate analyses, to determine which variables to include in adjusted model. #' @param meas Effect meassure. Input as c() of columnnames, use dput(). #' @param vars variables in model. Input as c() of columnnames, use dput(). #' @param string variables to test. Input as c() of columnnames, use dput(). #' @param ci flag to get results as OR with 95% confidence interval. #' @param data data frame to pull variables from. #' @keywords linear regression #' @export #' @examples #' rep_lm() rep_lm<-function(meas,vars,string,ci=FALSE,data){ require(broom) d<-data x<-data.frame(d[,c(string)]) v<-data.frame(d[,c(vars)]) y<-d[,c(meas)] dt<-cbind(y,v) m1<-length(coef(lm(y~.,data = dt))) if (is.factor(y)){stop("Some kind of error message would be nice, but y should not be a factor!")} if (ci==TRUE){ df<-data.frame(matrix(ncol = 3)) names(df)<-c("pred","or_ci","pv") for(i in 1:ncol(x)){ dat<-cbind(dt,x[,i]) m<-lm(y~.,data=dat) l<-suppressMessages(round(confint(m)[-c(1:m1),1],2)) u<-suppressMessages(round(confint(m)[-c(1:m1),2],2)) or<-round(coef(m)[-c(1:m1)],2) or_ci<-paste0(or," (",l," to ",u,")") pv<-round(tidy(m)$p.value[-c(1:m1)],3) x1<-x[,i] if (is.factor(x1)){ pred<-paste(names(x)[i],levels(x1)[-1],sep = "_")} else {pred<-names(x)[i]} df<-rbind(df,cbind(pred,or_ci,pv))}} if (ci==FALSE){ df<-data.frame(matrix(ncol = 3)) names(df)<-c("pred","b","pv") for(i in 1:ncol(x)){ dat<-cbind(dt,x[,i]) m<-lm(y~.,data=dat) b<-round(coef(m)[-c(1:m1)],3) pv<-round(tidy(m)$p.value[-c(1:m1)],3) x1<-x[,i] if (is.factor(x1)){ pred<-paste(names(x)[i],levels(x1)[-1],sep = "_") } else {pred<-names(x)[i]} df<-rbind(df,cbind(pred,b,pv)) }} pa<-as.numeric(df[,3]) pa<-ifelse(pa<0.001,"<0.001",pa) t <- ifelse(pa<=0.1|pa=="<0.001","include","drop") pa <- ifelse(pa<=0.05|pa=="<0.001",paste0("*",pa), ifelse(pa>0.05&pa<=0.1,paste0(".",pa),pa)) r<-data.frame(df[,1:2],pa,t)[-1,] return(r) }