#' A repeated regression function for change-in-estimate analysis #' #' For bivariate analyses. From "Modeling and variable selection in epidemiologic analysis." - S. Greenland, 1989. #' @param y Effect meassure. #' @param v1 Main variable in model #' @param string String of columnnames from dataframe to include. Use dput(). #' @keywords change-in-estimate #' #' @examples #' l<-5 #' y<-factor(rep(c("a","b"),l)) #' x<-rnorm(length(y), mean=50, sd=10) #' v1<-factor(rep(c("r","s"),length(y)/2)) #' v2<-as.numeric(sample(1:100, length(y), replace=FALSE)) #' v3<-as.numeric(1:length(y)) #' d<-data.frame(y,x,v1,v2,v3) #' preds<-dput(names(d)[3:ncol(d)]) #' cie_test(meas="y",vars="x",string=preds,data=d,logistic = TRUE,cut = 0.1) #' #' @export #' cie_test<-function(meas,vars,string,data,logistic=FALSE,cut=0.1){ require(broom) d<-data x<-data.frame(d[,c(string)]) v<-data.frame(d[,c(vars)]) names(v)<-c(vars) y<-d[,c(meas)] dt<-cbind(y,v) c<-as.numeric(cut) if(logistic==FALSE){ if (is.factor(y)){stop("Logistic is flagged as FALSE, but the provided meassure is formatted as a factor!")} e<-as.numeric(round(coef(lm(y~.,data = dt)),3))[1] df<-data.frame(pred="base",b=e) for(i in 1:ncol(x)){ dat<-cbind(dt,x[,i]) m<-lm(y~.,data=dat) b<-as.numeric(round(coef(m),3))[1] pred<-paste(names(x)[i]) df<-rbind(df,cbind(pred,b)) } di<-as.vector(abs(e-as.numeric(df[-1,2]))/e) dif<-c(NA,di) t<-c(NA,ifelse(di>=c,"include","drop")) r<-cbind(df,dif,t) } if(logistic==TRUE){ if (!is.factor(y)){stop("Logistic is flagged as TRUE, but the provided meassure is NOT formatted as a factor!")} e<-as.numeric(round(exp(coef(glm(y~.,family=binomial(),data=dt))),3))[1] df<-data.frame(pred="base",b=e) for(i in 1:ncol(x)){ dat<-cbind(dt,x[,i]) m<-glm(y~.,family=binomial(),data=dat) b<-as.numeric(round(exp(coef(m)),3))[1] pred<-paste(names(x)[i]) df<-rbind(df,cbind(pred,b)) } di<-as.vector(abs(e-as.numeric(df[-1,2]))/e) dif<-c(NA,di) t<-c(NA,ifelse(di>=c,"include","drop")) r<-cbind(df,dif,t) } return(r) }