#' Print regression results according to STROBE #' #' Printable table of logistic regression analysis oaccording to STROBE. #' @param meas outcome meassure variable name in data-data.frame as a string. Can be numeric or factor. Result is calculated accordingly. #' @param vars variables to compare against. As vector of columnnames. #' @param data dataframe of data. #' @param dec decimals for results, standard is set to 2. Mean and sd is dec-1. #' @keywords olr #' @export strobe_olr<-function(meas,vars,data,dec=2){ require(MASS) require(dplyr) d<-data m<-d[,c(meas)] v<-d[,c(vars)] dat<-data.frame(m,v) ma <- polr(m ~ ., data = dat, Hess=TRUE) actable <- coef(summary(ma)) pa <- pnorm(abs(actable[, "t value"]), lower.tail = FALSE) * 2 pa<-ifelse(pa<0.001,"<0.001",round(pa,3)) pa <- ifelse(pa<=0.05|pa=="<0.001",paste0("*",pa), ifelse(pa>0.05&pa<=0.1,paste0(".",pa),pa)) apv<-pa[1:length(coef(ma))] aco<-round(exp(coef(ma)),dec) aci<-round(exp(confint(ma)),dec) alo<-aci[,1] aup<-aci[,2] aor_ci<-paste0(aco," (",alo," to ",aup,")") dat2<-ma$model[,-1] # names(dat2)<-c(var,names(ads)) nq<-c() for (i in 1:ncol(dat2)){ if (is.factor(dat2[,i])){ vec<-dat2[,i] ns<-names(dat2)[i] for (r in 1:length(levels(vec))){ vr<-levels(vec)[r] dr<-vec[vec==vr] n<-as.numeric(length(dr)) nall<-as.numeric(nrow(dat2)) nl<-paste0(ns,levels(vec)[r]) pro<-round(n/nall*100,0) rt<-paste0(n," (",pro,"%)") nq<-rbind(nq,cbind(nl,rt)) } } if (!is.factor(dat2[,i])){ num<-dat2[,i] ns<-names(dat2)[i] n<-as.numeric(nrow(dat2)) nall<-as.numeric(nrow(dat2)) pro<-round(n/nall*100,0) rt<-paste0(n," (",pro,"%)") nq<-rbind(nq,cbind(ns,rt)) } } rnames<-c() for (i in 1:ncol(dat2)){ if (is.factor(dat2[,i])){ rnames<-c(rnames,names(dat2)[i],paste0(names(dat2)[i],levels(dat2[,i]))) } if (!is.factor(dat2[,i])){ rnames<-c(rnames,paste0(names(dat2)[i],".all"),names(dat2)[i]) } } res<-cbind(aor_ci,apv) rest<-data.frame(names=row.names(res),res,stringsAsFactors = F) numb<-data.frame(names=nq[,c("nl")],N=nq[,c("rt")],stringsAsFactors = F) namt<-data.frame(names=rnames,stringsAsFactors = F) coll<-left_join(left_join(namt,numb,by="names"),rest,by="names") df<-data.frame(coll) names(df)<-c("Variable","N","OR (95 % CI)","p value") return(df) }