#' A repeated logistic regression function #' #' For bivariate analyses. The confint() function is rather slow, causing the whole function to hang when including many predictors and calculating the ORs with CI. #' @param meas Effect meassure. Input as c() of columnnames, use dput(). #' @param vars variables in model. Input as c() of columnnames, use dput(). #' @param string variables to test. Input as c() of columnnames, use dput(). #' @param ci flag to get results as OR with 95% confidence interval. #' @param data dataframe to pull variables from. #' @param fixed.var flag to set "vars" as fixed in the model. When FALSE, then true bivariate logistic regression is performed. #' @keywords logistic #' @export rep_glm<-function(meas,vars=NULL,string,ci=FALSE,data,fixed.var=FALSE) { ## Intro and definitions require(broom) y<-data[,c(meas)] ## Factor check if(!is.factor(y)){stop("y is not a factor")} ## Running "true" bivariate analysis if (fixed.var==FALSE){ d<-data x<-data.frame(d[,c(vars,string)]) y<-d[,c(meas)] names(x)<-c(vars,string) if (ci==TRUE){ df<-data.frame(matrix(NA,ncol = 3)) names(df)<-c("pred","or_ci","pv") for(i in 1:ncol(x)){ dat<-data.frame(y=y,x[,i]) names(dat)<-c("y",names(x)[i]) m<-glm(y~.,family = binomial(),data=dat) suppressMessages(ci<-exp(confint(m))) l<-round(ci[-1,1],2) u<-round(ci[-1,2],2) or<-round(exp(coef(m))[-1],2) or_ci<-paste0(or," (",l," to ",u,")") pv<-round(tidy(m)$p.value[-1],3) x1<-x[,i] if (is.factor(x1)){ pred<-paste(names(x)[i],levels(x1)[-1],sep = "_") } else {pred<-names(x)[i]} df<-rbind(df,cbind(pred,or_ci,pv)) } } else { df<-data.frame(matrix(NA,ncol = 3)) names(df)<-c("pred","b","pv") for(i in 1:ncol(x)){ dat<-data.frame(y=y,x[,i]) names(dat)<-c("y",names(x)[i]) m<-glm(y~.,family = binomial(),data=dat) b<-round(coef(m)[-1],3) pv<-round(tidy(m)$p.value[-1],3) x1<-x[,i] if (is.factor(x1)){ pred<-paste(names(x)[i],levels(x1)[-1],sep = "_") } else {pred<-names(x)[i]} df<-rbind(df,cbind(pred,b,pv)) }} pa<-as.numeric(df[,3]) t <- ifelse(pa<=0.1,"include","drop") pa<-ifelse(pa<0.001,"<0.001",pa) pa <- ifelse(pa<=0.05|pa=="<0.001",paste0("*",pa), ifelse(pa>0.05&pa<=0.1,paste0(".",pa),pa)) r<-data.frame(df[,1:2],pa,t)[-1,] } ## Running multivariate analyses (eg "bivariate" analyses with fixed variables) if (fixed.var==TRUE){ d<-data x<-data.frame(d[,c(string)]) v<-data.frame(d[,c(vars)]) names(v)<-c(vars) y<-d[,c(meas)] dt<-cbind(y,v) m1<-length(coef(glm(y~.,family = binomial(),data = dt))) if (!is.factor(y)){stop("Some kind of error message would be nice, but y should be a factor!")} if (ci==TRUE){ df<-data.frame(matrix(ncol = 3)) names(df)<-c("pred","or_ci","pv") for(i in 1:ncol(x)){ dat<-cbind(dt,x[,i]) m<-glm(y~.,family = binomial(),data=dat) ci<-exp(confint(m)) l<-suppressMessages(round(ci[-c(1:m1),1],2)) u<-suppressMessages(round(ci[-c(1:m1),2],2)) or<-round(exp(coef(m))[-c(1:m1)],2) or_ci<-paste0(or," (",l," to ",u,")") pv<-round(tidy(m)$p.value[-c(1:m1)],3) x1<-x[,i] if (is.factor(x1)){ pred<-paste(names(x)[i],levels(x1)[-1],sep = "_")} else {pred<-names(x)[i]} df<-rbind(df,cbind(pred,or_ci,pv))}} if (ci==FALSE){ df<-data.frame(matrix(ncol = 3)) names(df)<-c("pred","b","pv") for(i in 1:ncol(x)){ dat<-cbind(dt,x[,i]) m<-glm(y~.,family = binomial(),data=dat) b<-round(coef(m)[-c(1:m1)],3) pv<-round(tidy(m)$p.value[-c(1:m1)],3) x1<-x[,i] if (is.factor(x1)){ pred<-paste(names(x)[i],levels(x1)[-1],sep = "_") } else {pred<-names(x)[i]} df<-rbind(df,cbind(pred,b,pv)) }} pa<-as.numeric(df[,"pv"]) t <- ifelse(pa<=0.1,"include","drop") pa<-ifelse(pa<0.001,"<0.001",pa) pa <- ifelse(pa<=0.05|pa=="<0.001",paste0("*",pa), ifelse(pa>0.05&pa<=0.1,paste0(".",pa),pa)) r<-data.frame(df[,1:2],pa,t)[-1,] } return(r) }