#' OBSOLETE - use 'print_olr' #' #' Print ordinal logistic regression results according to STROBE #' #' Printable table of ordinal logistic regression with bivariate and multivariate analyses. #' Table according to STROBE. Uses polr() funtion of the MASS-package. #' Formula analysed is the most simple m~v1+v2+vn. The is no significance test. Results are point estimates with 95 percent CI. #' @param meas outcome meassure variable name or response in data-data.frame as a string. Should be factor, preferably ordered. #' @param vars variables to compare against. As vector of columnnames. #' @param data dataframe of data. #' @param dec decimals for results, standard is set to 2. Mean and sd is dec-1. #' @param n.by.adj flag to indicate wether to count number of patients in adjusted model or overall for outcome meassure not NA. #' @keywords olr #' @export strobe_olr<-function(meas,vars,data,dec=2,n.by.adj=FALSE){ ## For calculation of p-value from t-value see rep_olr() require(MASS) require(dplyr) d<-data m<-d[,c(meas)] ads<-d[,c(vars)] if(!is.factor(m)){stop("'meas' should be a factor, preferably ordered.")} if(is.factor(m)){ ## Crude ORs dfcr<-data.frame(matrix(NA,ncol = 2)) names(dfcr)<-c("pred","or_ci") n.mn<-c() nref<-c() for(i in 1:ncol(ads)){ dat<-data.frame(m=m,ads[,i]) names(dat)<-c("m",names(ads)[i]) mn<-polr(m ~ ., data = dat, Hess=TRUE) n.mn<-c(n.mn,nrow(mn$model)) suppressMessages(ci<-matrix(exp(confint(mn)),ncol=2)) l<-round(ci[,1],dec) u<-round(ci[,2],dec) or<-round(exp(coef(mn)),dec) or_ci<-paste0(or," (",l," to ",u,")") x1<-ads[,i] if (is.factor(x1)){ pred<-paste0(names(ads)[i],levels(x1)[-1]) } else { pred<-names(ads)[i] } dfcr<-rbind(dfcr,cbind(pred,or_ci)) } ## Mutually adjusted ORs dat<-data.frame(m=m,ads) ma <-polr(m ~ ., data = dat, Hess=TRUE) miss<-length(ma$na.action) aco<-round(exp(coef(ma)),dec) suppressMessages(aci<-round(exp(confint(ma)),dec)) alo<-aci[,1] aup<-aci[,2] aor_ci<-paste0(aco," (",alo," to ",aup,")") nq<-c() if (n.by.adj==TRUE){ dat2<-ma$model[,-1] for (i in 1:ncol(dat2)){ if (is.factor(dat2[,i])){ vec<-dat2[,i] ns<-names(dat2)[i] for (r in 1:length(levels(vec))){ vr<-levels(vec)[r] n<-as.numeric(length(vec[vec==vr&!is.na(vec)])) nall<-as.numeric(length(dat2[,c(ns)])) n.meas<-nall nl<-paste0(ns,levels(vec)[r]) pro<-round(n/nall*100,0) rt<-paste0(n," (",pro,"%)") nq<-rbind(nq,cbind(nl,rt)) }} if (!is.factor(dat2[,i])){ num<-dat2[,i] nl<-names(dat2)[i] n<-as.numeric(length(num[!is.na(num)])) nall<-as.numeric(nrow(dat2)) n.meas<-nall pro<-round(n/nall*100,0) rt<-paste0(n," (",pro,"%)") nq<-rbind(nq,cbind(nl,rt)) }}} else { dat2<-dat[!is.na(dat[,1]),][,-1] n.meas<-nrow(dat2) for (i in 1:ncol(dat2)){ if (is.factor(dat2[,i])){ vec<-dat2[,i] ns<-names(dat2)[i] for (r in 1:length(levels(vec))){ vr<-levels(vec)[r] n<-as.numeric(length(vec[vec==vr&!is.na(vec)])) nall<-as.numeric(n.mn[i]) nl<-paste0(ns,levels(vec)[r]) pro<-round(n/nall*100,0) rt<-paste0(n," (",pro,"%)") nq<-rbind(nq,cbind(nl,rt)) }} if (!is.factor(dat2[,i])){ num<-dat2[,i] nl<-names(dat2)[i] n<-as.numeric(length(num[!is.na(num)])) nall<-as.numeric(n.meas) pro<-round(n/nall*100,0) rt<-paste0(n," (",pro,"%)") nq<-rbind(nq,cbind(nl,rt)) }} } rnames<-c() for (i in 1:ncol(dat2)){ if (is.factor(dat2[,i])){ rnames<-c(rnames,names(dat2)[i],paste0(names(dat2)[i],levels(dat2[,i]))) } if (!is.factor(dat2[,i])){ rnames<-c(rnames,paste0(names(dat2)[i],".all"),names(dat2)[i]) } } rest<-data.frame(names=names(aco),aor_ci,stringsAsFactors = F) numb<-data.frame(names=nq[,c("nl")],N=nq[,c("rt")],stringsAsFactors = F) namt<-data.frame(names=rnames,stringsAsFactors = F) coll<-left_join(left_join(namt,numb,by="names"),rest,by="names") header<-data.frame(matrix(paste0("Chance of higher ",meas),ncol = ncol(coll)),stringsAsFactors = F) names(header)<-names(coll) df<-data.frame(rbind(header,coll),stringsAsFactors = F) names(dfcr)[1]<-c("names") suppressWarnings(re<-left_join(df,dfcr,by="names")) rona<-c() for (i in 1:length(ads)){ if (is.factor(ads[,i])){ rona<-c(rona,names(ads[i]),levels(ads[,i]))} if (!is.factor(ads[,i])){ rona<-c(rona,names(ads[i]),"Per unit increase") } } ref<-data.frame(c(NA,rona),re[,2],re[,4],re[,3]) names(ref)<-c("Variable",paste0("N=",n.meas),"Bivariate OLR (95 % CI)","Mutually adjusted OLR (95 % CI)") ls<-list(tbl=ref,miss,n.meas,nrow(d)) names(ls)<-c("Printable table","Deleted due to missingness in adjusted analysis","Number of outcome observations","Length of dataframe") } return(ls) }