#' Logistic regression of predictors according to STROBE #' #' Printable table of logistic regression analysis according to STROBE. #' @param meas binary outcome meassure variable, column name in data.frame as a string. Can be numeric or factor. Result is calculated accordingly. #' @param adj variables to adjust for, as string. #' @param data dataframe of data. #' @param dec decimals for results, standard is set to 2. Mean and sd is dec-1. #' @keywords logistic #' @export #' @examples #' strobe_pred() strobe_pred<-function(meas,adj,data,dec=2){ ## Ønskeliste: ## ## - Sum af alle, der indgår (Overall N) ## - Ryd op i kode, der der er overflødig %-regning, alternativt, så fiks at NA'er ikke skal regnes med. ## require(dplyr) d<-data m<-d[,c(meas)] ads<-d[,c(adj)] ## Crude ORs dfcr<-data.frame(matrix(NA,ncol = 3)) names(dfcr)<-c("pred","or_ci","pv") for(i in 1:ncol(ads)){ dat<-data.frame(m=m,ads[,i]) names(dat)<-c("m",names(ads)[i]) mn<-glm(m~.,family = binomial(),data=dat) suppressMessages(ci<-exp(confint(mn))) l<-round(ci[-1,1],2) u<-round(ci[-1,2],2) or<-round(exp(coef(mn))[-1],2) or_ci<-paste0(or," (",l," to ",u,")") pv<-round(tidy(mn)$p.value[-1],3) x1<-ads[,i] if (is.factor(x1)){ pred<-paste0(names(ads)[i],levels(x1)[-1]) } else { pred<-names(ads)[i] } dfcr<-rbind(dfcr,cbind(pred,or_ci,pv)) } ## Mutually adjusted ORs dat<-data.frame(m=m,ads) ma <- glm(m ~ .,family = binomial(), data = dat) actable <- coef(summary(ma)) pa <- actable[,4] pa<-ifelse(pa<0.001,"<0.001",round(pa,3)) pa <- ifelse(pa<=0.05|pa=="<0.001",paste0("*",pa), ifelse(pa>0.05&pa<=0.1,paste0(".",pa),pa)) apv<-pa[1:length(coef(ma))] aco<-round(exp(coef(ma)),dec) suppressMessages(aci<-round(exp(confint(ma)),dec)) alo<-aci[,1] aup<-aci[,2] aor_ci<-paste0(aco," (",alo," to ",aup,")") dat2<-dat[,-1] # names(dat2)<-c(var,names(ads)) nq<-c() for (i in 1:ncol(dat2)){ if (is.factor(dat2[,i])){ vec<-dat2[,i] ns<-names(dat2)[i] for (r in 1:length(levels(vec))){ vr<-levels(vec)[r] dr<-vec[vec==vr&!is.na(vec)] n<-as.numeric(length(dr)) nall<-as.numeric(nrow(dat[!is.na(dat2[,c(ns)]),])) nl<-paste0(ns,levels(vec)[r]) pro<-round(n/nall*100,0) rt<-paste0(n," (",pro,"%)") nq<-rbind(nq,cbind(nl,rt)) } } if (!is.factor(dat2[,i])){ num<-dat2[,i] nl<-names(dat2)[i] rt<-as.numeric(nrow(dat[!is.na(dat2[,c(nl)]),])) nq<-rbind(nq,cbind(nl,rt)) } } rnames<-c() for (i in 1:ncol(dat2)){ if (is.factor(dat2[,i])){ rnames<-c(rnames,names(dat2)[i],paste0(names(dat2)[i],levels(dat2[,i]))) } if (!is.factor(dat2[,i])){ rnames<-c(rnames,paste0(names(dat2)[i],".all"),names(dat2)[i]) } } res<-cbind(aor_ci,apv) rest<-data.frame(names=row.names(res),res,stringsAsFactors = F) numb<-data.frame(names=nq[,c("nl")],N=nq[,c("rt")],stringsAsFactors = F) namt<-data.frame(names=rnames,stringsAsFactors = F) coll<-left_join(left_join(namt,numb,by="names"),rest,by="names") header<-data.frame(matrix("Adjusted",ncol = ncol(coll)),stringsAsFactors = F) names(header)<-names(coll) df<-data.frame(rbind(header,coll),stringsAsFactors = F) names(dfcr)[1]<-c("names") suppressWarnings(re<-left_join(df,dfcr,by="names")) ref<-data.frame(re[,1],re[,2],re[,5],re[,3]) names(ref)<-c("Variable","N","Crude OR (95 % CI)","Mutually adjusted OR (95 % CI)") return(ref) }