#' Logistic regression of predictors according to STROBE #' #' Printable table of logistic regression analysis according to STROBE. #' @param meas binary outcome meassure variable, column name in data.frame as a string. Can be numeric or factor. Result is calculated accordingly. #' @param adj variables to adjust for, as string. #' @param data dataframe of data. #' @param dec decimals for results, standard is set to 2. Mean and sd is dec-1. #' @param n.by.adj flag to indicate wether to count number of patients in adjusted model or overall for outcome meassure not NA. #' @keywords logistic #' @export #' @examples #' strobe_pred() strobe_pred<-function(meas,adj,data,dec=2,n.by.adj=FALSE){ ## Ønskeliste: ## ## - Tæl selv antal a NA'er require(dplyr) d<-data m<-d[,c(meas)] ads<-d[,c(adj)] ## Crude ORs dfcr<-data.frame(matrix(NA,ncol = 3)) names(dfcr)<-c("pred","or_ci","pv") n.mn<-c() nref<-c() for(i in 1:ncol(ads)){ dat<-data.frame(m=m,ads[,i]) names(dat)<-c("m",names(ads)[i]) mn<-glm(m~.,family = binomial(),data=dat) n.mn<-c(n.mn,nrow(mn$model)) suppressMessages(ci<-exp(confint(mn))) l<-round(ci[-1,1],2) u<-round(ci[-1,2],2) or<-round(exp(coef(mn))[-1],2) or_ci<-paste0(or," (",l," to ",u,")") pv<-round(tidy(mn)$p.value[-1],3) x1<-ads[,i] if (is.factor(x1)){ pred<-paste0(names(ads)[i],levels(x1)[-1]) } else { pred<-names(ads)[i] } dfcr<-rbind(dfcr,cbind(pred,or_ci,pv)) } ## Mutually adjusted ORs dat<-data.frame(m=m,ads) ma <- glm(m ~ .,family = binomial(), data = dat) miss<-length(ma$na.action) actable <- coef(summary(ma)) pa <- actable[,4] pa<-ifelse(pa<0.001,"<0.001",round(pa,3)) pa <- ifelse(pa<=0.05|pa=="<0.001",paste0("*",pa), ifelse(pa>0.05&pa<=0.1,paste0(".",pa),pa)) apv<-pa[1:length(coef(ma))] aco<-round(exp(coef(ma)),dec) suppressMessages(aci<-round(exp(confint(ma)),dec)) alo<-aci[,1] aup<-aci[,2] aor_ci<-paste0(aco," (",alo," to ",aup,")") # names(dat2)<-c(var,names(ads)) nq<-c() if (n.by.adj==TRUE){ dat2<-ma$model[,-1] for (i in 1:ncol(dat2)){ if (is.factor(dat2[,i])){ vec<-dat2[,i] ns<-names(dat2)[i] for (r in 1:length(levels(vec))){ vr<-levels(vec)[r] n<-as.numeric(length(vec[vec==vr&!is.na(vec)])) nall<-as.numeric(length(dat2[,c(ns)])) n.meas<-nall nl<-paste0(ns,levels(vec)[r]) pro<-round(n/nall*100,0) rt<-paste0(n," (",pro,"%)") nq<-rbind(nq,cbind(nl,rt)) }} if (!is.factor(dat2[,i])){ num<-dat2[,i] nl<-names(dat2)[i] n<-as.numeric(length(num[!is.na(num)])) nall<-as.numeric(nrow(dat2)) n.meas<-nall pro<-round(n/nall*100,0) rt<-paste0(n," (",pro,"%)") nq<-rbind(nq,cbind(nl,rt)) }}} else { dat2<-dat[!is.na(dat[,1]),][,-1] n.meas<-nrow(dat2) for (i in 1:ncol(dat2)){ if (is.factor(dat2[,i])){ vec<-dat2[,i] ns<-names(dat2)[i] for (r in 1:length(levels(vec))){ vr<-levels(vec)[r] n<-as.numeric(length(vec[vec==vr&!is.na(vec)])) nall<-as.numeric(n.mn[i]) nl<-paste0(ns,levels(vec)[r]) pro<-round(n/nall*100,0) rt<-paste0(n," (",pro,"%)") nq<-rbind(nq,cbind(nl,rt)) }} if (!is.factor(dat2[,i])){ num<-dat2[,i] nl<-names(dat2)[i] n<-as.numeric(length(num[!is.na(num)])) nall<-as.numeric(n.meas) pro<-round(n/nall*100,0) rt<-paste0(n," (",pro,"%)") nq<-rbind(nq,cbind(nl,rt)) }}} rnames<-c() for (i in 1:ncol(dat2)){ if (is.factor(dat2[,i])){ rnames<-c(rnames,names(dat2)[i],paste0(names(dat2)[i],levels(dat2[,i]))) } if (!is.factor(dat2[,i])){ rnames<-c(rnames,paste0(names(dat2)[i],".all"),names(dat2)[i]) } } res<-cbind(aor_ci,apv) rest<-data.frame(names=row.names(res),res,stringsAsFactors = F) numb<-data.frame(names=nq[,c("nl")],N=nq[,c("rt")],stringsAsFactors = F) namt<-data.frame(names=rnames,stringsAsFactors = F) coll<-left_join(left_join(namt,numb,by="names"),rest,by="names") header<-data.frame(matrix("Adjusted",ncol = ncol(coll)),stringsAsFactors = F) names(header)<-names(coll) df<-data.frame(rbind(header,coll),stringsAsFactors = F) names(dfcr)[1]<-c("names") suppressWarnings(re<-left_join(df,dfcr,by="names")) ref<-data.frame(re[,1],re[,2],re[,5],re[,3]) names(ref)<-c("Variable",paste0("N=",n.meas),"Crude OR (95 % CI)","Mutually adjusted OR (95 % CI)") ls<-list(tbl=ref,miss,n.meas,nrow(d)) names(ls)<-c("Printable table","Deleted due to missingness in adjusted analysis","Number of outcome observations","Length of dataframe") return(ls) }