#' Forrest plot from ordinal logistic regression #' #' Heavily inspired by https://www.r-bloggers.com/plotting-odds-ratios-aka-a-forrestplot-with-ggplot2/ #' @param x input data. #' @param title plot title #' @param dec decimals for labels #' @param lbls labels for variable names. Carefull, as the right order is not checked automatically! #' @param short flag to half number of ticks on horizontal axis. #' @param input can be either "model", which is a olr model (polr()), or "df", which is a dataframe whith three columns for OR, lower CI and upper CI- #' @keywords forestplot #' @export #' @examples #' plot_ord_odds() plot_ord_odds<-function(x, title = NULL,dec=3,lbls=NULL,short=FALSE,input="model"){ require(ggplot2) if (input=="model"){ odds<-data.frame(cbind(exp(coef(x)), exp(confint(x)))) } if (input=="df"){ odds<-x } names(odds)<-c("or", "lo", "up") rodds<-round(odds,digits = dec) if (!is.null(lbls)){ odds$vars<-paste0(lbls," \n",paste0(rodds$or," [",rodds$lo,":",rodds$up,"]")) } else { odds$vars<-paste0(row.names(odds)," \n",paste0(rodds$or," [",rodds$lo,":",rodds$up,"]")) } ticks<-c(seq(0, 1, by =.1), seq(1, 10, by =1), seq(10, 100, by =10)) if (short==TRUE){ ticks<-ticks[seq(1, length(ticks), 2)] } else {ticks<-ticks} odds$ord<-c(nrow(odds):1) ggplot(odds, aes(y= or, x = reorder(vars,ord))) + geom_point() + geom_errorbar(aes(ymin=lo, ymax=up), width=.2) + scale_y_log10(breaks=ticks, labels = ticks) + geom_hline(yintercept = 1, linetype=2) + coord_flip() + labs(title = title, x = "Variables", y = "OR (95 % CI)") + theme_bw() }