#' Print regression results according to STROBE #' #' Printable table of three dimensional regression analysis of group vs var for meas. By var. Includes p-values. #' @param meas outcome meassure variable name in data-data.frame as a string. Can be numeric or factor. Result is calculated accordingly. #' @param var binary exposure variable to compare against (active vs placebo). As string. #' @param group groups to compare, as string. #' @param adj variables to adjust for, as string. #' @param data dataframe of data. #' @param dec decimals for results, standard is set to 2. Mean and sd is dec-1. #' @keywords strobe #' @export strobe_diff_byvar<-function(meas,var,group,adj,data,dec=2){ ## meas: sdmt ## var: rtreat ## group: genotype ## for dichotome exposure variable (var) d <- data m <- d[, c(meas)] v <- d[, c(var)] g <- d[, c(group)] ads <- d[, c(adj)] dat <- data.frame(m, v, g, ads) df <- data.frame(grp = c(NA, as.character(levels(g)))) if (!is.factor(m)) { for (i in 1:length(levels(v))) { grp <- levels(dat$v)[i] di <- dat[dat$v == grp, ][, -2] mod <- lm(m ~ g, data = di) p <- coef(summary(mod))[2:length(levels(g)),4] p<-ifelse(p<0.001,"<0.001",round(p,3)) p <- ifelse(p<=0.05|p=="<0.001",paste0("*",p), ifelse(p>0.05&p<=0.1,paste0(".",p),p)) pv<-c("-",p) co <- c("-", round(coef(mod)[-1], dec)) ci<-round(confint(mod),dec)[2:length(levels(g)),] lo <- c("-", ci[,1]) up <- c("-", ci[,2]) ci <- paste0(co, " (", lo, " to ", up, ")") amod <- lm(m ~ ., data = di) pa <- coef(summary(amod))[2:length(levels(g)),4] pa<-ifelse(pa<0.001,"<0.001",round(pa,3)) pa <- ifelse(pa<=0.05|pa=="<0.001",paste0("*",pa), ifelse(pa>0.05&pa<=0.1,paste0(".",pa),pa)) apv<-c("-",pa) aco <- c("-", round(coef(amod)[2:length(levels(g))], dec)) aci<-round(confint(amod),dec)[2:length(levels(g)),] alo <- c("-", aci[,1]) aup <- c("-", aci[,2]) aci <- paste0(aco, " (", alo, " to ", aup, ")") nr <- c() for (r in 1:length(levels(g))) { vr <- levels(di$g)[r] dr <- di[di$g == vr, ] n <- as.numeric(nrow(dr[!is.na(dr$m), ])) mean <- round(mean(dr$m, na.rm = TRUE), dec - 1) sd <- round(sd(dr$m, na.rm = TRUE), dec - 1) ms <- paste0(mean, " (", sd, ")") nr <- c(nr, n, ms) } irl <- rbind(matrix(grp, ncol = 6), cbind(matrix(nr, ncol = 2, byrow = TRUE), cbind(ci,pv, aci,apv))) colnames(irl) <- c("N", "Mean (SD)", "Difference", "p-value", "Adjusted Difference", "Adjusted p-value") df <- cbind(df, irl) } } if (is.factor(m)) { for (i in 1:length(levels(v))) { grp <- levels(dat$v)[i] di <- dat[dat$v == grp, ][, -2] mod <- glm(m ~ g, family = binomial(), data = di) p <- coef(summary(mod))[2:length(levels(g)),4] p<-ifelse(p<0.001,"<0.001",round(p,3)) p <- ifelse(p<=0.05|p=="<0.001",paste0("*",p), ifelse(p>0.05&p<=0.1,paste0(".",p),p)) pv<-c("-",p) co <- c("-", round(exp(coef(mod)[-1]), dec)) ci <- suppressMessages(round(exp(confint(mod)),dec))[2:length(levels(g)),] lo <- c("-", ci[,1]) up <- c("-", ci[,2]) ci <- paste0(co, " (", lo, " to ", up, ")") amod <- glm(m ~ ., family = binomial(), data = di) pa <- coef(summary(amod))[2:length(levels(g)),4] pa<-ifelse(pa<0.001,"<0.001",round(pa,3)) pa <- ifelse(pa<=0.05|pa=="<0.001",paste0("*",pa), ifelse(pa>0.05&pa<=0.1,paste0(".",pa),pa)) apv<-c("-",pa) aco <- c("-", suppressMessages(round(exp(coef(amod)[2:length(levels(g))]), dec))) aci <- suppressMessages(round(exp(confint(mod)),dec)[2:length(levels(g)),]) alo <- c("-", aci[,1]) aup <- c("-", aci[,2]) aci <- paste0(aco, " (", alo, " to ", aup, ")") nr <- c() for (r in 1:length(levels(g))) { vr <- levels(di$g)[r] dr <- di[di$g == vr, ] n <- as.numeric(nrow(dr[!is.na(dr$m), ])) nl <- levels(m)[2] out <- nrow(dr[dr$m == nl & !is.na(dr$m), ]) pro <- round(out/n * 100, 0) rt <- paste0(out, " (", pro, "%)") nr <- c(nr, n, rt) } irl <- rbind(matrix(grp, ncol = 4), cbind(matrix(nr, ncol = 2, byrow = TRUE), cbind(ci,pv, aci,apv))) colnames(irl) <- c("N", paste0("N.", nl), "OR", "p-value", "Adjusted OR", "Adjusted p-value") df <- cbind(df, irl) } } return(df) }