mirror of
https://github.com/agdamsbo/daDoctoR.git
synced 2024-11-22 03:40:23 +01:00
Updated counting and added flag
This commit is contained in:
parent
52f60b448b
commit
fa76288a0a
@ -1,7 +1,7 @@
|
|||||||
Package: daDoctoR
|
Package: daDoctoR
|
||||||
Type: Package
|
Type: Package
|
||||||
Title: FUNCTIONS FOR HEALTH RESEARCH
|
Title: FUNCTIONS FOR HEALTH RESEARCH
|
||||||
Version: 0.1.0.9008
|
Version: 0.1.0.9009
|
||||||
Author@R: c(person("Andreas", "Gammelgaard Damsbo", email = "agdamsbo@pm.me", role = c("cre", "aut")))
|
Author@R: c(person("Andreas", "Gammelgaard Damsbo", email = "agdamsbo@pm.me", role = c("cre", "aut")))
|
||||||
Maintainer: Andreas Gammelgaard Damsbo <agdamsbo@pm.me>
|
Maintainer: Andreas Gammelgaard Damsbo <agdamsbo@pm.me>
|
||||||
Description: I am a Danish medical doctor involved in neuropsychiatric research.
|
Description: I am a Danish medical doctor involved in neuropsychiatric research.
|
||||||
|
@ -5,12 +5,13 @@
|
|||||||
#' @param adj variables to adjust for, as string.
|
#' @param adj variables to adjust for, as string.
|
||||||
#' @param data dataframe of data.
|
#' @param data dataframe of data.
|
||||||
#' @param dec decimals for results, standard is set to 2. Mean and sd is dec-1.
|
#' @param dec decimals for results, standard is set to 2. Mean and sd is dec-1.
|
||||||
|
#' @param n.by.adj flag to indicate wether to count number of patients in adjusted model or overall.
|
||||||
#' @keywords logistic
|
#' @keywords logistic
|
||||||
#' @export
|
#' @export
|
||||||
#' @examples
|
#' @examples
|
||||||
#' strobe_pred()
|
#' strobe_pred()
|
||||||
|
|
||||||
strobe_pred<-function(meas,adj,data,dec=2){
|
strobe_pred<-function(meas,adj,data,dec=2,n.by.adj=FALSE){
|
||||||
## Ønskeliste:
|
## Ønskeliste:
|
||||||
##
|
##
|
||||||
## - Sum af alle, der indgår (Overall N)
|
## - Sum af alle, der indgår (Overall N)
|
||||||
@ -58,7 +59,7 @@ strobe_pred<-function(meas,adj,data,dec=2){
|
|||||||
|
|
||||||
dat<-data.frame(m=m,ads)
|
dat<-data.frame(m=m,ads)
|
||||||
ma <- glm(m ~ .,family = binomial(), data = dat)
|
ma <- glm(m ~ .,family = binomial(), data = dat)
|
||||||
|
miss<-length(ma$na.action)
|
||||||
|
|
||||||
actable <- coef(summary(ma))
|
actable <- coef(summary(ma))
|
||||||
pa <- actable[,4]
|
pa <- actable[,4]
|
||||||
@ -74,32 +75,54 @@ strobe_pred<-function(meas,adj,data,dec=2){
|
|||||||
aup<-aci[,2]
|
aup<-aci[,2]
|
||||||
aor_ci<-paste0(aco," (",alo," to ",aup,")")
|
aor_ci<-paste0(aco," (",alo," to ",aup,")")
|
||||||
|
|
||||||
dat2<-dat[,-1]
|
|
||||||
# names(dat2)<-c(var,names(ads))
|
# names(dat2)<-c(var,names(ads))
|
||||||
|
|
||||||
nq<-c()
|
nq<-c()
|
||||||
|
|
||||||
for (i in 1:ncol(dat2)){
|
if (n.by.adj==TRUE){
|
||||||
if (is.factor(dat2[,i])){
|
dat2<-ma$model[,-1]
|
||||||
vec<-dat2[,i]
|
for (i in 1:ncol(dat2)){
|
||||||
ns<-names(dat2)[i]
|
if (is.factor(dat2[,i])){
|
||||||
for (r in 1:length(levels(vec))){
|
vec<-dat2[,i]
|
||||||
vr<-levels(vec)[r]
|
ns<-names(dat2)[i]
|
||||||
dr<-vec[vec==vr&!is.na(vec)]
|
for (r in 1:length(levels(vec))){
|
||||||
n<-as.numeric(length(dr))
|
vr<-levels(vec)[r]
|
||||||
nall<-as.numeric(nrow(dat[!is.na(dat2[,c(ns)]),]))
|
n<-as.numeric(length(vec[vec==vr&!is.na(vec)]))
|
||||||
nl<-paste0(ns,levels(vec)[r])
|
nall<-as.numeric(length(dat2[,c(ns)]))
|
||||||
pro<-round(n/nall*100,0)
|
nl<-paste0(ns,levels(vec)[r])
|
||||||
rt<-paste0(n," (",pro,"%)")
|
pro<-round(n/nall*100,0)
|
||||||
|
rt<-paste0(n," (",pro,"%)")
|
||||||
|
nq<-rbind(nq,cbind(nl,rt))
|
||||||
|
}}
|
||||||
|
if (!is.factor(dat2[,i])){
|
||||||
|
num<-dat2[,i]
|
||||||
|
nl<-names(dat2)[i]
|
||||||
|
rt<-as.numeric(length(dat2[,c(nl)]))
|
||||||
nq<-rbind(nq,cbind(nl,rt))
|
nq<-rbind(nq,cbind(nl,rt))
|
||||||
}
|
}}}
|
||||||
}
|
|
||||||
if (!is.factor(dat2[,i])){
|
else {
|
||||||
num<-dat2[,i]
|
dat2<-dat[,-1]
|
||||||
nl<-names(dat2)[i]
|
for (i in 1:ncol(dat2)){
|
||||||
rt<-as.numeric(nrow(dat[!is.na(dat2[,c(nl)]),]))
|
if (is.factor(dat2[,i])){
|
||||||
nq<-rbind(nq,cbind(nl,rt))
|
vec<-dat2[,i]
|
||||||
}
|
ns<-names(dat2)[i]
|
||||||
}
|
for (r in 1:length(levels(vec))){
|
||||||
|
vr<-levels(vec)[r]
|
||||||
|
n<-as.numeric(length(vec[vec==vr&!is.na(vec)]))
|
||||||
|
nall<-as.numeric(length(dat[,c(ns)]))
|
||||||
|
nl<-paste0(ns,levels(vec)[r])
|
||||||
|
pro<-round(n/nall*100,0)
|
||||||
|
rt<-paste0(n," (",pro,"%)")
|
||||||
|
nq<-rbind(nq,cbind(nl,rt))
|
||||||
|
}}
|
||||||
|
if (!is.factor(dat2[,i])){
|
||||||
|
num<-dat2[,i]
|
||||||
|
nl<-names(dat2)[i]
|
||||||
|
rt<-as.numeric(length(dat[,c(nl)]))
|
||||||
|
nq<-rbind(nq,cbind(nl,rt))
|
||||||
|
}}}
|
||||||
|
|
||||||
|
|
||||||
rnames<-c()
|
rnames<-c()
|
||||||
|
|
||||||
@ -132,5 +155,8 @@ strobe_pred<-function(meas,adj,data,dec=2){
|
|||||||
|
|
||||||
names(ref)<-c("Variable","N","Crude OR (95 % CI)","Mutually adjusted OR (95 % CI)")
|
names(ref)<-c("Variable","N","Crude OR (95 % CI)","Mutually adjusted OR (95 % CI)")
|
||||||
|
|
||||||
return(ref)
|
ls<-list(tbl=ref,miss)
|
||||||
|
names(ls)<-c("Printable table","Deleted due to missingness")
|
||||||
|
|
||||||
|
return(ls)
|
||||||
}
|
}
|
||||||
|
@ -4,7 +4,7 @@
|
|||||||
\alias{strobe_pred}
|
\alias{strobe_pred}
|
||||||
\title{Logistic regression of predictors according to STROBE}
|
\title{Logistic regression of predictors according to STROBE}
|
||||||
\usage{
|
\usage{
|
||||||
strobe_pred(meas, adj, data, dec = 2)
|
strobe_pred(meas, adj, data, dec = 2, n.by.adj = FALSE)
|
||||||
}
|
}
|
||||||
\arguments{
|
\arguments{
|
||||||
\item{meas}{binary outcome meassure variable, column name in data.frame as a string. Can be numeric or factor. Result is calculated accordingly.}
|
\item{meas}{binary outcome meassure variable, column name in data.frame as a string. Can be numeric or factor. Result is calculated accordingly.}
|
||||||
@ -14,6 +14,8 @@ strobe_pred(meas, adj, data, dec = 2)
|
|||||||
\item{data}{dataframe of data.}
|
\item{data}{dataframe of data.}
|
||||||
|
|
||||||
\item{dec}{decimals for results, standard is set to 2. Mean and sd is dec-1.}
|
\item{dec}{decimals for results, standard is set to 2. Mean and sd is dec-1.}
|
||||||
|
|
||||||
|
\item{n.by.adj}{flag to indicate wether to count number of patients in adjusted model or overall.}
|
||||||
}
|
}
|
||||||
\description{
|
\description{
|
||||||
Printable table of logistic regression analysis according to STROBE.
|
Printable table of logistic regression analysis according to STROBE.
|
||||||
|
Loading…
Reference in New Issue
Block a user