mirror of
https://github.com/agdamsbo/daDoctoR.git
synced 2024-11-22 03:40:23 +01:00
u
This commit is contained in:
parent
cc48f5cac4
commit
f807350a89
@ -1,7 +1,6 @@
|
||||
# Generated by roxygen2: do not edit by hand
|
||||
|
||||
export(age_calc)
|
||||
export(cie_test)
|
||||
export(col_fact)
|
||||
export(col_num)
|
||||
export(cpr_check)
|
||||
@ -15,3 +14,4 @@ export(rep_biv)
|
||||
export(rep_epi_tests)
|
||||
export(rep_glm)
|
||||
export(rep_lm)
|
||||
export(rep_reg_cie)
|
||||
|
24
R/rep_glm.R
24
R/rep_glm.R
@ -3,24 +3,31 @@
|
||||
#' @description For bivariate analyses. The confint() function is rather slow, causing the whole function to hang when including many predictors and calculating the ORs with CI.
|
||||
#' @param meas Effect meassure. Input as c() of columnnames, use dput().
|
||||
#' @param vars variables in model. Input as c() of columnnames, use dput().
|
||||
#' @param string variables to test. Input as c() of columnnames, use dput().
|
||||
#' @param str variables to test. Input as c() of columnnames, use dput().
|
||||
#' @param ci flag to get results as OR with 95% confidence interval.
|
||||
#' @param data data frame to pull variables from.
|
||||
#' @param dta data frame to pull variables from.
|
||||
#' @keywords logistic regression
|
||||
#' @export
|
||||
#' @examples
|
||||
#' rep_glm()
|
||||
#' l<-50
|
||||
#' y<-factor(rep(c("a","b"),l))
|
||||
#' x<-rnorm(length(y), mean=50, sd=10)
|
||||
#' v1<-factor(rep(c("r","s"),length(y)/2))
|
||||
#' v2<-sample(1:100, length(y), replace=FALSE)
|
||||
#' v3<-as.numeric(1:length(y))
|
||||
#' d<-data.frame(y,x,v1,v2,v3)
|
||||
#' preds<-c("v1","v2","x")
|
||||
#' rep_glm(meas="y",vars="v3",string=preds,ci=F,data=d)
|
||||
|
||||
|
||||
rep_glm<-function(meas,vars,string,ci=FALSE,data){
|
||||
## x is data.frame of predictors, y is vector of an aoutcome as a factor
|
||||
## output is returned as coefficient, or if or=TRUE as OR with 95 % CI.
|
||||
##
|
||||
|
||||
require(broom)
|
||||
|
||||
d<-data
|
||||
x<-data.frame(d[,c(string)])
|
||||
v<-data.frame(d[,c(vars)])
|
||||
names(v)<-c(vars)
|
||||
y<-d[,c(meas)]
|
||||
dt<-cbind(y,v)
|
||||
m1<-length(coef(glm(y~.,family = binomial(),data = dt)))
|
||||
@ -57,11 +64,9 @@ rep_glm<-function(meas,vars,string,ci=FALSE,data){
|
||||
|
||||
for(i in 1:ncol(x)){
|
||||
dat<-cbind(dt,x[,i])
|
||||
|
||||
m<-glm(y~.,family = binomial(),data=dat)
|
||||
|
||||
b<-round(coef(m)[-c(1:m1)],3)
|
||||
|
||||
pv<-round(tidy(m)$p.value[-c(1:m1)],3)
|
||||
|
||||
x1<-x[,i]
|
||||
@ -89,3 +94,6 @@ rep_glm<-function(meas,vars,string,ci=FALSE,data){
|
||||
return(r)
|
||||
}
|
||||
|
||||
|
||||
|
||||
|
||||
|
26
R/rep_lm.R
26
R/rep_lm.R
@ -9,7 +9,15 @@
|
||||
#' @keywords linear regression
|
||||
#' @export
|
||||
#' @examples
|
||||
#' rep_lm()
|
||||
#' l<-50
|
||||
#' y<-factor(rep(c("a","b"),l))
|
||||
#' x<-rnorm(length(y), mean=50, sd=10)
|
||||
#' v1<-factor(rep(c("r","s"),length(y)/2))
|
||||
#' v2<-sample(1:100, length(y), replace=FALSE)
|
||||
#' v3<-as.numeric(1:length(y))
|
||||
#' d<-data.frame(y,x,v1,v2,v3)
|
||||
#' preds<-c("v1","v2","v3")
|
||||
#' rep_lm(meas="x",vars="y",string=preds,ci=F,data=d)
|
||||
|
||||
rep_lm<-function(meas,vars,string,ci=FALSE,data){
|
||||
|
||||
@ -18,6 +26,7 @@ rep_lm<-function(meas,vars,string,ci=FALSE,data){
|
||||
d<-data
|
||||
x<-data.frame(d[,c(string)])
|
||||
v<-data.frame(d[,c(vars)])
|
||||
names(v)<-c(vars)
|
||||
y<-d[,c(meas)]
|
||||
dt<-cbind(y,v)
|
||||
m1<-length(coef(lm(y~.,data = dt)))
|
||||
@ -26,7 +35,7 @@ rep_lm<-function(meas,vars,string,ci=FALSE,data){
|
||||
|
||||
if (ci==TRUE){
|
||||
|
||||
df<-data.frame(matrix(ncol = 3))
|
||||
df<-data.frame(matrix(NA,ncol = 3))
|
||||
names(df)<-c("pred","or_ci","pv")
|
||||
|
||||
for(i in 1:ncol(x)){
|
||||
@ -49,7 +58,7 @@ rep_lm<-function(meas,vars,string,ci=FALSE,data){
|
||||
|
||||
if (ci==FALSE){
|
||||
|
||||
df<-data.frame(matrix(ncol = 3))
|
||||
df<-data.frame(matrix(NA,ncol = 3))
|
||||
names(df)<-c("pred","b","pv")
|
||||
|
||||
for(i in 1:ncol(x)){
|
||||
@ -85,3 +94,14 @@ rep_lm<-function(meas,vars,string,ci=FALSE,data){
|
||||
|
||||
return(r)
|
||||
}
|
||||
|
||||
|
||||
l<-50
|
||||
y<-factor(rep(c("a","b"),l))
|
||||
x<-rnorm(length(y), mean=50, sd=10)
|
||||
v1<-factor(rep(c("r","s"),length(y)/2))
|
||||
v2<-sample(1:100, length(y), replace=FALSE)
|
||||
v3<-as.numeric(1:length(y))
|
||||
d<-data.frame(y,x,v1,v2,v3)
|
||||
preds<-c("v1","v2","v3")
|
||||
rep_lm(meas="x",vars="y",string=preds,ci=F,data=d)
|
||||
|
@ -10,9 +10,9 @@
|
||||
#' @keywords change-in-estimate
|
||||
#' @export
|
||||
#' @examples
|
||||
#' cie_test()
|
||||
#' rep_reg_cie()
|
||||
|
||||
cie_test<-function(meas,vars,string,data,logistic=FALSE,cut=0.1){
|
||||
rep_reg_cie<-function(meas,vars,string,data,logistic=FALSE,cut=0.1){
|
||||
|
||||
require(broom)
|
||||
|
@ -11,17 +11,25 @@ rep_glm(meas, vars, string, ci = FALSE, data)
|
||||
|
||||
\item{vars}{variables in model. Input as c() of columnnames, use dput().}
|
||||
|
||||
\item{string}{variables to test. Input as c() of columnnames, use dput().}
|
||||
|
||||
\item{ci}{flag to get results as OR with 95% confidence interval.}
|
||||
|
||||
\item{data}{data frame to pull variables from.}
|
||||
\item{str}{variables to test. Input as c() of columnnames, use dput().}
|
||||
|
||||
\item{dta}{data frame to pull variables from.}
|
||||
}
|
||||
\description{
|
||||
For bivariate analyses. The confint() function is rather slow, causing the whole function to hang when including many predictors and calculating the ORs with CI.
|
||||
}
|
||||
\examples{
|
||||
rep_glm()
|
||||
l<-50
|
||||
y<-factor(rep(c("a","b"),l))
|
||||
x<-rnorm(length(y), mean=50, sd=10)
|
||||
v1<-factor(rep(c("r","s"),length(y)/2))
|
||||
v2<-sample(1:100, length(y), replace=FALSE)
|
||||
v3<-as.numeric(1:length(y))
|
||||
d<-data.frame(y,x,v1,v2,v3)
|
||||
preds<-c("v1","v2","x")
|
||||
rep_glm(meas="y",vars="v3",string=preds,ci=F,data=d)
|
||||
}
|
||||
\keyword{logistic}
|
||||
\keyword{regression}
|
||||
|
@ -21,7 +21,15 @@ rep_lm(meas, vars, string, ci = FALSE, data)
|
||||
For bivariate analyses, to determine which variables to include in adjusted model.
|
||||
}
|
||||
\examples{
|
||||
rep_lm()
|
||||
l<-50
|
||||
y<-factor(rep(c("a","b"),l))
|
||||
x<-rnorm(length(y), mean=50, sd=10)
|
||||
v1<-factor(rep(c("r","s"),length(y)/2))
|
||||
v2<-sample(1:100, length(y), replace=FALSE)
|
||||
v3<-as.numeric(1:length(y))
|
||||
d<-data.frame(y,x,v1,v2,v3)
|
||||
preds<-c("v1","v2","v3")
|
||||
rep_lm(meas="x",vars="y",string=preds,ci=F,data=d)
|
||||
}
|
||||
\keyword{linear}
|
||||
\keyword{regression}
|
||||
|
@ -1,10 +1,10 @@
|
||||
% Generated by roxygen2: do not edit by hand
|
||||
% Please edit documentation in R/cie_test.R
|
||||
\name{cie_test}
|
||||
\alias{cie_test}
|
||||
% Please edit documentation in R/rep_reg_cie.R
|
||||
\name{rep_reg_cie}
|
||||
\alias{rep_reg_cie}
|
||||
\title{A repeated regression function for change-in-estimate analysis}
|
||||
\usage{
|
||||
cie_test(meas, vars, string, data, logistic = FALSE, cut = 0.1)
|
||||
rep_reg_cie(meas, vars, string, data, logistic = FALSE, cut = 0.1)
|
||||
}
|
||||
\arguments{
|
||||
\item{meas}{Effect meassure. Input as c() of columnnames, use dput().}
|
||||
@ -23,6 +23,6 @@ cie_test(meas, vars, string, data, logistic = FALSE, cut = 0.1)
|
||||
For bivariate analyses. From "Modeling and variable selection in epidemiologic analysis." - S. Greenland, 1989.
|
||||
}
|
||||
\examples{
|
||||
cie_test()
|
||||
rep_reg_cie()
|
||||
}
|
||||
\keyword{change-in-estimate}
|
Loading…
Reference in New Issue
Block a user