mirror of
https://github.com/agdamsbo/daDoctoR.git
synced 2025-01-18 11:26:35 +01:00
u
This commit is contained in:
parent
17f4c83ee4
commit
f2f7f6a98f
173
R/cie_test.R
173
R/cie_test.R
@ -1,165 +1,82 @@
|
||||
#' A repeated regression function for change-in-estimate analysis
|
||||
#'
|
||||
#' For bivariate analyses.
|
||||
#' For bivariate analyses. From "Modeling and variable selection in epidemiologic analysis." - S. Greenland, 1989.
|
||||
#' @param y Effect meassure.
|
||||
#' @param v1 Main variable in model
|
||||
#' @param string String of columnnames from dataframe to include. Use dput().
|
||||
#' @keywords change-in-estimate
|
||||
#' @export
|
||||
#'
|
||||
#' @examples
|
||||
#' cie_test()
|
||||
#' l<-5
|
||||
#' y<-factor(rep(c("a","b"),l))
|
||||
#' x<-rnorm(length(y), mean=50, sd=10)
|
||||
#' v1<-factor(rep(c("r","s"),length(y)/2))
|
||||
#' v2<-as.numeric(sample(1:100, length(y), replace=FALSE))
|
||||
#' v3<-as.numeric(1:length(y))
|
||||
#' d<-data.frame(y,x,v1,v2,v3)
|
||||
#' preds<-dput(names(d)[3:ncol(d)])
|
||||
#' cie_test(meas="y",vars="x",string=preds,data=d,logistic = TRUE,cut = 0.1)
|
||||
#'
|
||||
#' @export
|
||||
#'
|
||||
|
||||
cie_test<-function(y,v1,string,data,logistic=FALSE,cut=0.1,v2=NULL,v3=NULL){
|
||||
## Calculating variables, that should be included for a change in estimate analysis.
|
||||
## v1-3 are possible locked variables, y is the outcome vector.
|
||||
## String defines variables to test, and is provided as vector of variable names. Use dput().
|
||||
## From "Modeling and variable selection in epidemiologic analysis." - S. Greenland, 1989.
|
||||
cie_test<-function(meas,vars,string,data,logistic=FALSE,cut=0.1){
|
||||
|
||||
require(broom)
|
||||
|
||||
d<-data
|
||||
x<-select(d,one_of(c(string)))
|
||||
x<-data.frame(d[,c(string)])
|
||||
v<-data.frame(d[,c(vars)])
|
||||
names(v)<-c(vars)
|
||||
y<-d[,c(meas)]
|
||||
dt<-cbind(y,v)
|
||||
|
||||
c<-as.numeric(cut)
|
||||
|
||||
if(logistic==FALSE){
|
||||
if (is.factor(y)){stop("Some kind of error message would be nice, but y should not be a factor!")}
|
||||
|
||||
if (is.null(v2)&is.null(v3)){
|
||||
|
||||
e<-as.numeric(round(coef(lm(y~v1)),3))[1]
|
||||
|
||||
if (is.factor(y)){stop("Logistic is flagged as FALSE, but the provided meassure is formatted as a factor!")}
|
||||
|
||||
e<-as.numeric(round(coef(lm(y~.,data = dt)),3))[1]
|
||||
df<-data.frame(pred="base",b=e)
|
||||
|
||||
for(i in 1:ncol(x)){
|
||||
|
||||
m<-lm(y~v1+x[,i])
|
||||
dat<-cbind(dt,x[,i])
|
||||
m<-lm(y~.,data=dat)
|
||||
|
||||
b<-as.numeric(round(coef(m),3))[1]
|
||||
|
||||
v<-x[,i]
|
||||
pred<-paste(names(x)[i])
|
||||
|
||||
pred<-paste(names(x)[i])
|
||||
df<-rbind(df,cbind(pred,b)) }
|
||||
|
||||
df<-rbind(df,cbind(pred,b))
|
||||
}
|
||||
t<-c(NA,ifelse(abs(e-as.numeric(df[-1,2]))>=(e*cut),"include","drop"))
|
||||
df<-cbind(df,t)
|
||||
}
|
||||
|
||||
if (!is.null(v2)&is.null(v3)){
|
||||
|
||||
e<-as.numeric(round(coef(lm(y~v1+v2)),3))[1]
|
||||
|
||||
df<-data.frame(pred="base",b=e)
|
||||
|
||||
for(i in 1:ncol(x)){
|
||||
|
||||
m<-lm(y~v1+v2+x[,i])
|
||||
|
||||
b<-as.numeric(round(coef(m),3))[1]
|
||||
|
||||
v<-x[,i]
|
||||
|
||||
pred<-paste(names(x)[i])
|
||||
|
||||
df<-rbind(df,cbind(pred,b))
|
||||
}
|
||||
t<-c(NA,ifelse(abs(e-as.numeric(df[-1,2]))>=(e*cut),"include","drop"))
|
||||
df<-cbind(df,t)
|
||||
}
|
||||
|
||||
if (!is.null(v2)&!is.null(v3)){
|
||||
|
||||
e<-as.numeric(round(coef(lm(y~v1+v2+v3)),3))[1]
|
||||
|
||||
df<-data.frame(pred="base",b=e)
|
||||
|
||||
for(i in 1:ncol(x)){
|
||||
|
||||
m<-lm(y~v1+v2+v3+x[,i])
|
||||
|
||||
b<-as.numeric(round(coef(m),3))[1]
|
||||
|
||||
v<-x[,i]
|
||||
|
||||
pred<-paste(names(x)[i])
|
||||
|
||||
df<-rbind(df,cbind(pred,b))
|
||||
|
||||
}
|
||||
t<-c(NA,ifelse(abs(e-as.numeric(df[-1,2]))>=(e*cut),"include","drop"))
|
||||
df<-cbind(df,t)
|
||||
}}
|
||||
di<-as.vector(abs(e-as.numeric(df[-1,2]))/e)
|
||||
dif<-c(NA,di)
|
||||
t<-c(NA,ifelse(di>=c,"include","drop"))
|
||||
r<-cbind(df,dif,t) }
|
||||
|
||||
if(logistic==TRUE){
|
||||
|
||||
if (!is.factor(y)){stop("Some kind of error message would be nice, but y should be a factor!")}
|
||||
if (!is.factor(y)){stop("Logistic is flagged as TRUE, but the provided meassure is NOT formatted as a factor!")}
|
||||
|
||||
if (is.null(v2)&is.null(v3)){
|
||||
|
||||
e<-as.numeric(round(exp(coef(glm(y~v1,family=binomial()))),3))[1]
|
||||
e<-as.numeric(round(exp(coef(glm(y~.,family=binomial(),data=dt))),3))[1]
|
||||
|
||||
df<-data.frame(pred="base",b=e)
|
||||
|
||||
for(i in 1:ncol(x)){
|
||||
|
||||
m<-glm(y~v1+x[,i],family=binomial())
|
||||
dat<-cbind(dt,x[,i])
|
||||
m<-glm(y~.,family=binomial(),data=dat)
|
||||
|
||||
b<-as.numeric(round(exp(coef(m)),3))[1]
|
||||
|
||||
v<-x[,i]
|
||||
pred<-paste(names(x)[i])
|
||||
|
||||
pred<-paste(names(x)[i])
|
||||
df<-rbind(df,cbind(pred,b)) }
|
||||
|
||||
df<-rbind(df,cbind(pred,b))
|
||||
}
|
||||
t<-c(NA,ifelse(abs(e-as.numeric(df[-1,2]))>=(e*cut),"include","drop"))
|
||||
df<-cbind(df,t)
|
||||
}
|
||||
|
||||
if (!is.null(v2)&is.null(v3)){
|
||||
|
||||
e<-as.numeric(round(exp(coef(glm(y~v1+v2,family=binomial()))),3))[1]
|
||||
|
||||
df<-data.frame(pred="base",b=e)
|
||||
|
||||
for(i in 1:ncol(x)){
|
||||
|
||||
m<-glm(y~v1+v2+x[,i],family=binomial())
|
||||
|
||||
b<-as.numeric(round(exp(coef(m)),3))[1]
|
||||
|
||||
v<-x[,i]
|
||||
|
||||
pred<-paste(names(x)[i])
|
||||
|
||||
df<-rbind(df,cbind(pred,b))
|
||||
}
|
||||
t<-c(NA,ifelse(abs(e-as.numeric(df[-1,2]))>=(e*cut),"include","drop"))
|
||||
df<-cbind(df,t)
|
||||
}
|
||||
|
||||
if (!is.null(v2)&!is.null(v3)){
|
||||
|
||||
e<-as.numeric(round(exp(coef(glm(y~v1+v2+v3,family=binomial()))),3))[1]
|
||||
|
||||
df<-data.frame(pred="base",b=e)
|
||||
|
||||
for(i in 1:ncol(x)){
|
||||
|
||||
m<-glm(y~v1+v2+v3+x[,i],family=binomial())
|
||||
|
||||
b<-as.numeric(round(exp(coef(m)),3))[1]
|
||||
|
||||
v<-x[,i]
|
||||
|
||||
pred<-paste(names(x)[i])
|
||||
|
||||
df<-rbind(df,cbind(pred,b))
|
||||
|
||||
}
|
||||
t<-c(NA,ifelse(abs(e-as.numeric(df[-1,2]))>=(e*cut),"include","drop"))
|
||||
df<-cbind(df,t)
|
||||
}}
|
||||
result<-df
|
||||
return(df)
|
||||
di<-as.vector(abs(e-as.numeric(df[-1,2]))/e)
|
||||
dif<-c(NA,di)
|
||||
t<-c(NA,ifelse(di>=c,"include","drop"))
|
||||
r<-cbind(df,dif,t)
|
||||
}
|
||||
return(r)
|
||||
}
|
||||
|
@ -4,20 +4,28 @@
|
||||
\alias{cie_test}
|
||||
\title{A repeated regression function for change-in-estimate analysis}
|
||||
\usage{
|
||||
cie_test(y, v1, string, data, logistic = FALSE, cut = 0.1, v2 = NULL,
|
||||
v3 = NULL)
|
||||
cie_test(meas, vars, string, data, logistic = FALSE, cut = 0.1)
|
||||
}
|
||||
\arguments{
|
||||
\item{string}{String of columnnames from dataframe to include. Use dput().}
|
||||
|
||||
\item{y}{Effect meassure.}
|
||||
|
||||
\item{v1}{Main variable in model}
|
||||
|
||||
\item{string}{String of columnnames from dataframe to include. Use dput().}
|
||||
}
|
||||
\description{
|
||||
For bivariate analyses.
|
||||
For bivariate analyses. From "Modeling and variable selection in epidemiologic analysis." - S. Greenland, 1989.
|
||||
}
|
||||
\examples{
|
||||
cie_test()
|
||||
l<-5
|
||||
y<-factor(rep(c("a","b"),l))
|
||||
x<-rnorm(length(y), mean=50, sd=10)
|
||||
v1<-factor(rep(c("r","s"),length(y)/2))
|
||||
v2<-as.numeric(sample(1:100, length(y), replace=FALSE))
|
||||
v3<-as.numeric(1:length(y))
|
||||
d<-data.frame(y,x,v1,v2,v3)
|
||||
preds<-dput(names(d)[3:ncol(d)])
|
||||
cie_test(meas="y",vars="x",string=preds,data=d,logistic = TRUE,cut = 0.1)
|
||||
|
||||
}
|
||||
\keyword{change-in-estimate}
|
||||
|
Loading…
x
Reference in New Issue
Block a user