mirror of
https://github.com/agdamsbo/daDoctoR.git
synced 2024-11-24 12:41:54 +01:00
adding p-vals to _byvar
This commit is contained in:
parent
0819d48953
commit
e5392893f9
@ -1,7 +1,7 @@
|
|||||||
Package: daDoctoR
|
Package: daDoctoR
|
||||||
Type: Package
|
Type: Package
|
||||||
Title: FUNCTIONS FOR HEALTH RESEARCH
|
Title: FUNCTIONS FOR HEALTH RESEARCH
|
||||||
Version: 0.1.0.9020
|
Version: 0.1.0.9021
|
||||||
Author@R: c(person("Andreas", "Gammelgaard Damsbo", email = "agdamsbo@pm.me", role = c("cre", "aut")))
|
Author@R: c(person("Andreas", "Gammelgaard Damsbo", email = "agdamsbo@pm.me", role = c("cre", "aut")))
|
||||||
Maintainer: Andreas Gammelgaard Damsbo <agdamsbo@pm.me>
|
Maintainer: Andreas Gammelgaard Damsbo <agdamsbo@pm.me>
|
||||||
Description: I am a Danish medical doctor involved in neuropsychiatric research.
|
Description: I am a Danish medical doctor involved in neuropsychiatric research.
|
||||||
|
@ -1,6 +1,6 @@
|
|||||||
#' Print regression results according to STROBE
|
#' Print regression results according to STROBE
|
||||||
#'
|
#'
|
||||||
#' Printable table of three dimensional regression analysis of group vs var for meas. By var.
|
#' Printable table of three dimensional regression analysis of group vs var for meas. By var. Includes p-values.
|
||||||
#' @param meas outcome meassure variable name in data-data.frame as a string. Can be numeric or factor. Result is calculated accordingly.
|
#' @param meas outcome meassure variable name in data-data.frame as a string. Can be numeric or factor. Result is calculated accordingly.
|
||||||
#' @param var binary exposure variable to compare against (active vs placebo). As string.
|
#' @param var binary exposure variable to compare against (active vs placebo). As string.
|
||||||
#' @param groups groups to compare, as string.
|
#' @param groups groups to compare, as string.
|
||||||
@ -13,100 +13,127 @@
|
|||||||
#' strobe_diff_byvar()
|
#' strobe_diff_byvar()
|
||||||
|
|
||||||
strobe_diff_byvar<-function(meas,var,group,adj,data,dec=2){
|
strobe_diff_byvar<-function(meas,var,group,adj,data,dec=2){
|
||||||
## Wishlist:
|
|
||||||
## -fix confint()
|
|
||||||
|
|
||||||
|
|
||||||
## meas: sdmt
|
## meas: sdmt
|
||||||
## var: rtreat
|
## var: rtreat
|
||||||
## group: genotype
|
## group: genotype
|
||||||
## for dichotome exposure variable (var)
|
## for dichotome exposure variable (var)
|
||||||
|
|
||||||
d<-data
|
d <- data
|
||||||
m<-d[,c(meas)]
|
m <- d[, c(meas)]
|
||||||
v<-d[,c(var)]
|
v <- d[, c(var)]
|
||||||
g<-d[,c(group)]
|
g <- d[, c(group)]
|
||||||
|
ads <- d[, c(adj)]
|
||||||
|
dat <- data.frame(m, v, g, ads)
|
||||||
|
df <- data.frame(grp = c(NA, as.character(levels(g))))
|
||||||
|
if (!is.factor(m)) {
|
||||||
|
for (i in 1:length(levels(v))) {
|
||||||
|
grp <- levels(dat$v)[i]
|
||||||
|
di <- dat[dat$v == grp, ][, -2]
|
||||||
|
mod <- lm(m ~ g, data = di)
|
||||||
|
|
||||||
ads<-d[,c(adj)]
|
p <- coef(summary(mod))[2:length(levels(g)),4]
|
||||||
|
p<-ifelse(p<0.001,"<0.001",round(p,3))
|
||||||
|
p <- ifelse(p<=0.05|p=="<0.001",paste0("*",p),
|
||||||
|
ifelse(p>0.05&p<=0.1,paste0(".",p),p))
|
||||||
|
pv<-c("-",p)
|
||||||
|
|
||||||
dat<-data.frame(m,v,g,ads)
|
co <- c("-", round(coef(mod)[-1], dec))
|
||||||
|
ci<-round(confint(mod),dec)[2:length(levels(g)),]
|
||||||
|
lo <- c("-", ci[,1])
|
||||||
|
up <- c("-", ci[,2])
|
||||||
|
ci <- paste0(co, " (", lo, " to ", up, ")")
|
||||||
|
|
||||||
df<-data.frame(grp=c(NA,as.character(levels(g))))
|
amod <- lm(m ~ ., data = di)
|
||||||
|
|
||||||
if(!is.factor(m)){
|
pa <- coef(summary(amod))[2:length(levels(g)),4]
|
||||||
|
pa<-ifelse(pa<0.001,"<0.001",round(pa,3))
|
||||||
|
pa <- ifelse(pa<=0.05|pa=="<0.001",paste0("*",pa),
|
||||||
|
ifelse(pa>0.05&pa<=0.1,paste0(".",pa),pa))
|
||||||
|
apv<-c("-",pa)
|
||||||
|
|
||||||
for (i in 1:length(levels(v))){
|
aco <- c("-", round(coef(amod)[2:length(levels(g))],
|
||||||
grp<-levels(dat$v)[i]
|
dec))
|
||||||
di<-dat[dat$v==grp,][,-2]
|
aci<-round(confint(amod),dec)[2:length(levels(g)),]
|
||||||
|
alo <- c("-", aci[,1])
|
||||||
mod<-lm(m~g,data=di)
|
aup <- c("-", aci[,2])
|
||||||
co<-c("-",round(coef(mod)[-1],dec))
|
aci <- paste0(aco, " (", alo, " to ", aup, ")")
|
||||||
lo<-c("-",round(confint(mod)[-1,1],dec))
|
nr <- c()
|
||||||
up<-c("-",round(confint(mod)[-1,2],dec))
|
for (r in 1:length(levels(g))) {
|
||||||
|
vr <- levels(di$g)[r]
|
||||||
ci<-paste0(co," (",lo," to ",up,")")
|
dr <- di[di$g == vr, ]
|
||||||
|
n <- as.numeric(nrow(dr[!is.na(dr$m), ]))
|
||||||
amod<-lm(m~.,data=di)
|
mean <- round(mean(dr$m, na.rm = TRUE), dec -
|
||||||
aco<-c("-",round(coef(amod)[2:length(levels(g))],dec))
|
1)
|
||||||
alo<-c("-",round(confint(amod)[2:length(levels(g)),1],dec))
|
sd <- round(sd(dr$m, na.rm = TRUE), dec - 1)
|
||||||
aup<-c("-",round(confint(amod)[2:length(levels(g)),2],dec))
|
ms <- paste0(mean, " (", sd, ")")
|
||||||
|
nr <- c(nr, n, ms)
|
||||||
aci<-paste0(aco," (",alo," to ",aup,")")
|
|
||||||
|
|
||||||
nr<-c()
|
|
||||||
|
|
||||||
for (r in 1:length(levels(g))){
|
|
||||||
vr<-levels(di$g)[r]
|
|
||||||
dr<-di[di$g==vr,]
|
|
||||||
n<-as.numeric(nrow(dr[!is.na(dr$m),]))
|
|
||||||
mean<-round(mean(dr$m,na.rm = TRUE),dec-1)
|
|
||||||
sd<-round(sd(dr$m,na.rm = TRUE),dec-1)
|
|
||||||
ms<-paste0(mean," (",sd,")")
|
|
||||||
|
|
||||||
nr<-c(nr,n,ms)
|
|
||||||
}
|
}
|
||||||
irl<-rbind(matrix(grp,ncol=4),cbind(matrix(nr,ncol=2,byrow = TRUE),cbind(ci,aci)))
|
irl <- rbind(matrix(grp, ncol = 6), cbind(matrix(nr,
|
||||||
colnames(irl)<-c("N","Mean (SD)","Difference","Adjusted Difference")
|
ncol = 2, byrow = TRUE), cbind(ci,pv, aci,apv)))
|
||||||
df<-cbind(df,irl)
|
colnames(irl) <- c("N",
|
||||||
}}
|
"Mean (SD)",
|
||||||
|
"Difference",
|
||||||
|
"p-value",
|
||||||
|
"Adjusted Difference",
|
||||||
|
"Adjusted p-value")
|
||||||
|
df <- cbind(df, irl)
|
||||||
|
}
|
||||||
|
}
|
||||||
|
if (is.factor(m)) {
|
||||||
|
for (i in 1:length(levels(v))) {
|
||||||
|
grp <- levels(dat$v)[i]
|
||||||
|
di <- dat[dat$v == grp, ][, -2]
|
||||||
|
mod <- glm(m ~ g, family = binomial(), data = di)
|
||||||
|
|
||||||
if(is.factor(m)){
|
p <- coef(summary(mod))[2:length(levels(g)),4]
|
||||||
|
p<-ifelse(p<0.001,"<0.001",round(p,3))
|
||||||
|
p <- ifelse(p<=0.05|p=="<0.001",paste0("*",p),
|
||||||
|
ifelse(p>0.05&p<=0.1,paste0(".",p),p))
|
||||||
|
pv<-c("-",p)
|
||||||
|
|
||||||
for (i in 1:length(levels(v))){
|
co <- c("-", round(exp(coef(mod)[-1]), dec))
|
||||||
grp<-levels(dat$v)[i]
|
ci <- suppressMessages(round(exp(confint(mod)),dec))[2:length(levels(g)),]
|
||||||
di<-dat[dat$v==grp,][,-2]
|
lo <- c("-", ci[,1])
|
||||||
|
up <- c("-", ci[,2])
|
||||||
|
ci <- paste0(co, " (", lo, " to ", up, ")")
|
||||||
|
|
||||||
mod<-glm(m~g,family=binomial(),data=di)
|
amod <- glm(m ~ ., family = binomial(), data = di)
|
||||||
co<-c("-",round(exp(coef(mod)[-1]),dec))
|
|
||||||
lo<-c("-",round(exp(confint(mod)[-1,1]),dec))
|
|
||||||
up<-c("-",round(exp(confint(mod)[-1,2]),dec))
|
|
||||||
|
|
||||||
ci<-paste0(co," (",lo," to ",up,")")
|
pa <- coef(summary(amod))[2:length(levels(g)),4]
|
||||||
|
pa<-ifelse(pa<0.001,"<0.001",round(pa,3))
|
||||||
|
pa <- ifelse(pa<=0.05|pa=="<0.001",paste0("*",pa),
|
||||||
|
ifelse(pa>0.05&pa<=0.1,paste0(".",pa),pa))
|
||||||
|
apv<-c("-",pa)
|
||||||
|
|
||||||
amod<-glm(m~.,family=binomial(),data=di)
|
aco <- c("-", suppressMessages(round(exp(coef(amod)[2:length(levels(g))]),
|
||||||
aco<-c("-",suppressMessages(round(exp(coef(amod)[2:length(levels(g))]),dec)))
|
dec)))
|
||||||
alo<-c("-",suppressMessages(round(exp(confint(amod)[2:length(levels(g)),1]),dec)))
|
aci <- suppressMessages(round(exp(confint(mod)),dec)[2:length(levels(g)),])
|
||||||
aup<-c("-",suppressMessages(round(exp(confint(amod)[2:length(levels(g)),2]),dec)))
|
alo <- c("-", aci[,1])
|
||||||
|
aup <- c("-", aci[,2])
|
||||||
|
aci <- paste0(aco, " (", alo, " to ", aup, ")")
|
||||||
|
|
||||||
aci<-paste0(aco," (",alo," to ",aup,")")
|
nr <- c()
|
||||||
|
for (r in 1:length(levels(g))) {
|
||||||
nr<-c()
|
vr <- levels(di$g)[r]
|
||||||
|
dr <- di[di$g == vr, ]
|
||||||
for (r in 1:length(levels(g))){
|
n <- as.numeric(nrow(dr[!is.na(dr$m), ]))
|
||||||
vr<-levels(di$g)[r]
|
nl <- levels(m)[2]
|
||||||
dr<-di[di$g==vr,]
|
out <- nrow(dr[dr$m == nl & !is.na(dr$m), ])
|
||||||
n<-as.numeric(nrow(dr[!is.na(dr$m),]))
|
pro <- round(out/n * 100, 0)
|
||||||
nl<-levels(m)[2]
|
rt <- paste0(out, " (", pro, "%)")
|
||||||
out<-nrow(dr[dr$m==nl&!is.na(dr$m),])
|
nr <- c(nr, n, rt)
|
||||||
pro<-round(out/n*100,0)
|
|
||||||
rt<-paste0(out," (",pro,"%)")
|
|
||||||
|
|
||||||
nr<-c(nr,n,rt)
|
|
||||||
}
|
}
|
||||||
irl<-rbind(matrix(grp,ncol=4),cbind(matrix(nr,ncol=2,byrow = TRUE),cbind(ci,aci)))
|
irl <- rbind(matrix(grp, ncol = 4), cbind(matrix(nr,
|
||||||
colnames(irl)<-c("N",paste0("N.",nl),"OR","Adjusted OR")
|
ncol = 2, byrow = TRUE), cbind(ci,pv, aci,apv)))
|
||||||
df<-cbind(df,irl)
|
colnames(irl) <- c("N",
|
||||||
}}
|
paste0("N.", nl),
|
||||||
|
"OR",
|
||||||
|
"p-value",
|
||||||
|
"Adjusted OR",
|
||||||
|
"Adjusted p-value")
|
||||||
|
df <- cbind(df, irl)
|
||||||
|
}
|
||||||
|
}
|
||||||
return(df)
|
return(df)
|
||||||
}
|
}
|
||||||
|
Loading…
Reference in New Issue
Block a user