included counting of outcomes

This commit is contained in:
agdamsbo 2019-12-13 12:39:42 +01:00
parent 36a0862645
commit e10228bdec
3 changed files with 48 additions and 35 deletions

View File

@ -1,6 +1,6 @@
Package: daDoctoR Package: daDoctoR
Title: Functions For Health Research Title: Functions For Health Research
Version: 0.19.12 Version: 0.19.13
Year: 2019 Year: 2019
Author: Andreas Gammelgaard Damsbo <agdamsbo@pm.me> Author: Andreas Gammelgaard Damsbo <agdamsbo@pm.me>
Maintainer: Andreas Gammelgaard Damsbo <agdamsbo@pm.me> Maintainer: Andreas Gammelgaard Damsbo <agdamsbo@pm.me>

View File

@ -4,6 +4,7 @@
#' Includes borth bivariate and multivariate in the same table. #' Includes borth bivariate and multivariate in the same table.
#' Output is a list, with the first item being the main "output" as a dataframe. #' Output is a list, with the first item being the main "output" as a dataframe.
#' Automatically uses logistic regression model for dichotomous outcome variable and linear regression model for continous outcome variable. Linear regression will give estimated adjusted true mean in list. #' Automatically uses logistic regression model for dichotomous outcome variable and linear regression model for continous outcome variable. Linear regression will give estimated adjusted true mean in list.
#' For logistic regression gives count of outcome variable pr variable level.
#' @param meas binary outcome meassure variable, column name in data.frame as a string. Can be numeric or factor. Result is calculated accordingly. #' @param meas binary outcome meassure variable, column name in data.frame as a string. Can be numeric or factor. Result is calculated accordingly.
#' @param adj variables to adjust for, as string. #' @param adj variables to adjust for, as string.
#' @param data dataframe of data. #' @param data dataframe of data.
@ -14,9 +15,6 @@
#' @export #' @export
strobe_pred<-function(meas,adj,data,dec=2,n.by.adj=FALSE,p.val=FALSE){ strobe_pred<-function(meas,adj,data,dec=2,n.by.adj=FALSE,p.val=FALSE){
## Ønskeliste:
##
## - Tæl selv antal a NA'er
require(dplyr) require(dplyr)
@ -87,44 +85,58 @@ strobe_pred<-function(meas,adj,data,dec=2,n.by.adj=FALSE,p.val=FALSE){
nall<-length(!is.na(dat[,1])) nall<-length(!is.na(dat[,1]))
if (n.by.adj==TRUE){ if (n.by.adj==TRUE){
dat2<-ma$model[,-1] dat2<-ma$model
# nalt<-nrow(dat2) # nalt<-nrow(dat2)
for (i in 1:ncol(dat2)){ for (i in 2:ncol(dat2)) {
if (is.factor(dat2[,i])){
vec<-dat2[,i]
ns<-names(dat2)[i]
for (r in 1:length(levels(vec))){
vr<-levels(vec)[r]
n<-length(vec[vec==vr&!is.na(vec)])
rt<-paste0(n," (",round(n/nall*100,0),"%)")
nq<-rbind(nq,cbind(paste0(ns,levels(vec)[r]),rt))
}}
if (!is.factor(dat2[,i])){
num<-dat2[,i]
n<-as.numeric(length(num[!is.na(num)]))
rt<-paste0(n," (",round(n/nall*100,0),"%)")
nq<-rbind(nq,cbind(names(dat2)[i],rt))
}}
}
else {
dat2<-dat[!is.na(dat[,1]),][,-1]
for (i in 1:ncol(dat2)) {
if (is.factor(dat2[, i])) { if (is.factor(dat2[, i])) {
vec <- dat2[, i] vec <- dat2[, i]
ns <- names(dat2)[i] ns <- names(dat2)[i]
for (r in 1:length(levels(vec))) { for (r in 1:length(levels(vec))) {
vr <- levels(vec)[r] vr <- levels(vec)[r]
## Counting all included in analysis
n <- length(vec[vec == vr & !is.na(vec)]) n <- length(vec[vec == vr & !is.na(vec)])
rt <- paste0(n, " (", round(n/nall * 100, 0), "%)") rt <- paste0(n, " (", round(n/nall * 100, 0), "%)")
nq <- rbind(nq, cbind(paste0(ns, levels(vec)[r]), rt)) ## Counting all included in analysis with outcome
lvl<-levels(dat2[,1])[2]
no <- length(vec[vec == vr & dat2[,1]==lvl & !is.na(vec)])
ro <- paste0(no, " (", round(no/n * 100, 0), "%)")
## Combining
nq <- rbind(nq, cbind(paste0(ns, levels(vec)[r]), rt,ro))
} }
} }
if (!is.factor(dat2[, i])) { if (!is.factor(dat2[, i])) {
num <- dat2[, i] num <- dat2[, i]
n <- length(num[!is.na(num)]) n <- length(num[!is.na(num)])
rt <- paste0(n, " (", round(n/nall * 100, 0), "%)") rt <- paste0(n, " (", round(n/nall * 100, 0), "%)")
nq <- rbind(nq, cbind(names(dat2)[i], rt)) nq <- rbind(nq, cbind(names(dat2)[i], rt,ro="-"))
}
}
}
else {
dat2<-dat[!is.na(dat[,1]),]
for (i in 2:ncol(dat2)) {
if (is.factor(dat2[, i])) {
vec <- dat2[, i]
ns <- names(dat2)[i]
for (r in 1:length(levels(vec))) {
vr <- levels(vec)[r]
## Counting all included in analysis
n <- length(vec[vec == vr & !is.na(vec)])
rt <- paste0(n, " (", round(n/nall * 100, 0), "%)")
## Counting all included in analysis with outcome
lvl<-levels(dat2[,1])[2]
no <- length(vec[vec == vr & dat2[,1]==lvl & !is.na(vec)])
ro <- paste0(no, " (", round(no/n * 100, 0), "%)")
## Combining
nq <- rbind(nq, cbind(paste0(ns, levels(vec)[r]), rt,ro))
}
}
if (!is.factor(dat2[, i])) {
num <- dat2[, i]
n <- length(num[!is.na(num)])
rt <- paste0(n, " (", round(n/nall * 100, 0), "%)")
nq <- rbind(nq, cbind(names(dat2)[i], rt,ro="-"))
} }
} }
} }
@ -141,12 +153,12 @@ strobe_pred<-function(meas,adj,data,dec=2,n.by.adj=FALSE,p.val=FALSE){
res<-cbind(aor_ci,apv) res<-cbind(aor_ci,apv)
rest<-data.frame(names=row.names(res),res,stringsAsFactors = F) rest<-data.frame(names=row.names(res),res,stringsAsFactors = F)
numb<-data.frame(names=nq[,1],N=nq[,2],stringsAsFactors = F) numb<-data.frame(names=nq[,1],N=nq[,2],N.out=nq[,3],stringsAsFactors = F)
namt<-data.frame(names=rnames,stringsAsFactors = F) namt<-data.frame(names=tail(rnames,-3),stringsAsFactors = F)
coll<-left_join(left_join(namt,numb,by="names"),rest,by="names") coll<-left_join(left_join(namt,numb,by="names"),rest,by="names")
header<-data.frame(matrix(paste0("Chance of ",meas," is ",levels(m)[-1]),ncol = ncol(coll)),stringsAsFactors = F) header<-data.frame(matrix(paste0("Chance of ",meas," is ",levels(m)[2]),ncol = ncol(coll)),stringsAsFactors = F)
names(header)<-names(coll) names(header)<-names(coll)
df<-data.frame(rbind(header,coll),stringsAsFactors = F) df<-data.frame(rbind(header,coll),stringsAsFactors = F)
@ -165,14 +177,14 @@ strobe_pred<-function(meas,adj,data,dec=2,n.by.adj=FALSE,p.val=FALSE){
} }
if (p.val==TRUE){ if (p.val==TRUE){
ref<-data.frame(c(NA,rona),re[,2],re[,5],re[,6],re[,3],re[,4]) ref<-data.frame(c(NA,rona),re[,"N"],re[,"N.out"],re[,"or_ci"],re[,"pv"],re[,"aor_ci"],re[,"apv"])
names(ref)<-c("Variable",paste0("N=",nall),"Crude OR (95 % CI)","p-value","Mutually adjusted OR (95 % CI)","A p-value") names(ref)<-c("Variable",paste0("N=",nall),paste0("N, ",meas," is ",levels(m)[2]),"Crude OR (95 % CI)","p-value","Mutually adjusted OR (95 % CI)","A p-value")
} }
else{ else{
ref<-data.frame(c(NA,rona),re[,2],re[,5],re[,3]) ref<-data.frame(c(NA,rona),re[,"N"],re[,"N.out"],re[,"or_ci"],re[,"aor_ci"])
names(ref)<-c("Variable",paste0("N=",nall),"Crude OR (95 % CI)","Mutually adjusted OR (95 % CI)") names(ref)<-c("Variable",paste0("N=",nall),paste0("N, ",meas," is ",levels(m)[2]),"Crude OR (95 % CI)","Mutually adjusted OR (95 % CI)")
} }
ls<-list(tbl=ref,miss,nall,nrow(d)) ls<-list(tbl=ref,miss,nall,nrow(d))

View File

@ -25,5 +25,6 @@ Printable table of regression model according to STROBE for linear or binary out
Includes borth bivariate and multivariate in the same table. Includes borth bivariate and multivariate in the same table.
Output is a list, with the first item being the main "output" as a dataframe. Output is a list, with the first item being the main "output" as a dataframe.
Automatically uses logistic regression model for dichotomous outcome variable and linear regression model for continous outcome variable. Linear regression will give estimated adjusted true mean in list. Automatically uses logistic regression model for dichotomous outcome variable and linear regression model for continous outcome variable. Linear regression will give estimated adjusted true mean in list.
For logistic regression gives count of outcome variable pr variable level.
} }
\keyword{logistic} \keyword{logistic}