mirror of
https://github.com/agdamsbo/daDoctoR.git
synced 2025-01-18 03:16:34 +01:00
included counting of outcomes
This commit is contained in:
parent
36a0862645
commit
e10228bdec
@ -1,6 +1,6 @@
|
||||
Package: daDoctoR
|
||||
Title: Functions For Health Research
|
||||
Version: 0.19.12
|
||||
Version: 0.19.13
|
||||
Year: 2019
|
||||
Author: Andreas Gammelgaard Damsbo <agdamsbo@pm.me>
|
||||
Maintainer: Andreas Gammelgaard Damsbo <agdamsbo@pm.me>
|
||||
|
@ -4,6 +4,7 @@
|
||||
#' Includes borth bivariate and multivariate in the same table.
|
||||
#' Output is a list, with the first item being the main "output" as a dataframe.
|
||||
#' Automatically uses logistic regression model for dichotomous outcome variable and linear regression model for continous outcome variable. Linear regression will give estimated adjusted true mean in list.
|
||||
#' For logistic regression gives count of outcome variable pr variable level.
|
||||
#' @param meas binary outcome meassure variable, column name in data.frame as a string. Can be numeric or factor. Result is calculated accordingly.
|
||||
#' @param adj variables to adjust for, as string.
|
||||
#' @param data dataframe of data.
|
||||
@ -14,9 +15,6 @@
|
||||
#' @export
|
||||
|
||||
strobe_pred<-function(meas,adj,data,dec=2,n.by.adj=FALSE,p.val=FALSE){
|
||||
## Ønskeliste:
|
||||
##
|
||||
## - Tæl selv antal a NA'er
|
||||
|
||||
require(dplyr)
|
||||
|
||||
@ -87,44 +85,58 @@ strobe_pred<-function(meas,adj,data,dec=2,n.by.adj=FALSE,p.val=FALSE){
|
||||
nall<-length(!is.na(dat[,1]))
|
||||
|
||||
if (n.by.adj==TRUE){
|
||||
dat2<-ma$model[,-1]
|
||||
dat2<-ma$model
|
||||
# nalt<-nrow(dat2)
|
||||
for (i in 1:ncol(dat2)){
|
||||
if (is.factor(dat2[,i])){
|
||||
vec<-dat2[,i]
|
||||
ns<-names(dat2)[i]
|
||||
for (r in 1:length(levels(vec))){
|
||||
vr<-levels(vec)[r]
|
||||
n<-length(vec[vec==vr&!is.na(vec)])
|
||||
rt<-paste0(n," (",round(n/nall*100,0),"%)")
|
||||
nq<-rbind(nq,cbind(paste0(ns,levels(vec)[r]),rt))
|
||||
}}
|
||||
if (!is.factor(dat2[,i])){
|
||||
num<-dat2[,i]
|
||||
n<-as.numeric(length(num[!is.na(num)]))
|
||||
rt<-paste0(n," (",round(n/nall*100,0),"%)")
|
||||
nq<-rbind(nq,cbind(names(dat2)[i],rt))
|
||||
}}
|
||||
}
|
||||
|
||||
else {
|
||||
dat2<-dat[!is.na(dat[,1]),][,-1]
|
||||
for (i in 1:ncol(dat2)) {
|
||||
for (i in 2:ncol(dat2)) {
|
||||
if (is.factor(dat2[, i])) {
|
||||
vec <- dat2[, i]
|
||||
ns <- names(dat2)[i]
|
||||
for (r in 1:length(levels(vec))) {
|
||||
vr <- levels(vec)[r]
|
||||
## Counting all included in analysis
|
||||
n <- length(vec[vec == vr & !is.na(vec)])
|
||||
rt <- paste0(n, " (", round(n/nall * 100, 0), "%)")
|
||||
nq <- rbind(nq, cbind(paste0(ns, levels(vec)[r]), rt))
|
||||
## Counting all included in analysis with outcome
|
||||
lvl<-levels(dat2[,1])[2]
|
||||
no <- length(vec[vec == vr & dat2[,1]==lvl & !is.na(vec)])
|
||||
ro <- paste0(no, " (", round(no/n * 100, 0), "%)")
|
||||
## Combining
|
||||
nq <- rbind(nq, cbind(paste0(ns, levels(vec)[r]), rt,ro))
|
||||
}
|
||||
}
|
||||
if (!is.factor(dat2[, i])) {
|
||||
num <- dat2[, i]
|
||||
n <- length(num[!is.na(num)])
|
||||
rt <- paste0(n, " (", round(n/nall * 100, 0), "%)")
|
||||
nq <- rbind(nq, cbind(names(dat2)[i], rt))
|
||||
nq <- rbind(nq, cbind(names(dat2)[i], rt,ro="-"))
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
else {
|
||||
dat2<-dat[!is.na(dat[,1]),]
|
||||
for (i in 2:ncol(dat2)) {
|
||||
if (is.factor(dat2[, i])) {
|
||||
vec <- dat2[, i]
|
||||
ns <- names(dat2)[i]
|
||||
for (r in 1:length(levels(vec))) {
|
||||
vr <- levels(vec)[r]
|
||||
## Counting all included in analysis
|
||||
n <- length(vec[vec == vr & !is.na(vec)])
|
||||
rt <- paste0(n, " (", round(n/nall * 100, 0), "%)")
|
||||
## Counting all included in analysis with outcome
|
||||
lvl<-levels(dat2[,1])[2]
|
||||
no <- length(vec[vec == vr & dat2[,1]==lvl & !is.na(vec)])
|
||||
ro <- paste0(no, " (", round(no/n * 100, 0), "%)")
|
||||
## Combining
|
||||
nq <- rbind(nq, cbind(paste0(ns, levels(vec)[r]), rt,ro))
|
||||
}
|
||||
}
|
||||
if (!is.factor(dat2[, i])) {
|
||||
num <- dat2[, i]
|
||||
n <- length(num[!is.na(num)])
|
||||
rt <- paste0(n, " (", round(n/nall * 100, 0), "%)")
|
||||
nq <- rbind(nq, cbind(names(dat2)[i], rt,ro="-"))
|
||||
}
|
||||
}
|
||||
}
|
||||
@ -141,12 +153,12 @@ strobe_pred<-function(meas,adj,data,dec=2,n.by.adj=FALSE,p.val=FALSE){
|
||||
res<-cbind(aor_ci,apv)
|
||||
rest<-data.frame(names=row.names(res),res,stringsAsFactors = F)
|
||||
|
||||
numb<-data.frame(names=nq[,1],N=nq[,2],stringsAsFactors = F)
|
||||
namt<-data.frame(names=rnames,stringsAsFactors = F)
|
||||
numb<-data.frame(names=nq[,1],N=nq[,2],N.out=nq[,3],stringsAsFactors = F)
|
||||
namt<-data.frame(names=tail(rnames,-3),stringsAsFactors = F)
|
||||
|
||||
coll<-left_join(left_join(namt,numb,by="names"),rest,by="names")
|
||||
|
||||
header<-data.frame(matrix(paste0("Chance of ",meas," is ",levels(m)[-1]),ncol = ncol(coll)),stringsAsFactors = F)
|
||||
header<-data.frame(matrix(paste0("Chance of ",meas," is ",levels(m)[2]),ncol = ncol(coll)),stringsAsFactors = F)
|
||||
names(header)<-names(coll)
|
||||
|
||||
df<-data.frame(rbind(header,coll),stringsAsFactors = F)
|
||||
@ -165,14 +177,14 @@ strobe_pred<-function(meas,adj,data,dec=2,n.by.adj=FALSE,p.val=FALSE){
|
||||
}
|
||||
|
||||
if (p.val==TRUE){
|
||||
ref<-data.frame(c(NA,rona),re[,2],re[,5],re[,6],re[,3],re[,4])
|
||||
ref<-data.frame(c(NA,rona),re[,"N"],re[,"N.out"],re[,"or_ci"],re[,"pv"],re[,"aor_ci"],re[,"apv"])
|
||||
|
||||
names(ref)<-c("Variable",paste0("N=",nall),"Crude OR (95 % CI)","p-value","Mutually adjusted OR (95 % CI)","A p-value")
|
||||
names(ref)<-c("Variable",paste0("N=",nall),paste0("N, ",meas," is ",levels(m)[2]),"Crude OR (95 % CI)","p-value","Mutually adjusted OR (95 % CI)","A p-value")
|
||||
}
|
||||
else{
|
||||
ref<-data.frame(c(NA,rona),re[,2],re[,5],re[,3])
|
||||
ref<-data.frame(c(NA,rona),re[,"N"],re[,"N.out"],re[,"or_ci"],re[,"aor_ci"])
|
||||
|
||||
names(ref)<-c("Variable",paste0("N=",nall),"Crude OR (95 % CI)","Mutually adjusted OR (95 % CI)")
|
||||
names(ref)<-c("Variable",paste0("N=",nall),paste0("N, ",meas," is ",levels(m)[2]),"Crude OR (95 % CI)","Mutually adjusted OR (95 % CI)")
|
||||
}
|
||||
|
||||
ls<-list(tbl=ref,miss,nall,nrow(d))
|
||||
|
@ -25,5 +25,6 @@ Printable table of regression model according to STROBE for linear or binary out
|
||||
Includes borth bivariate and multivariate in the same table.
|
||||
Output is a list, with the first item being the main "output" as a dataframe.
|
||||
Automatically uses logistic regression model for dichotomous outcome variable and linear regression model for continous outcome variable. Linear regression will give estimated adjusted true mean in list.
|
||||
For logistic regression gives count of outcome variable pr variable level.
|
||||
}
|
||||
\keyword{logistic}
|
||||
|
Loading…
x
Reference in New Issue
Block a user