mirror of
https://github.com/agdamsbo/daDoctoR.git
synced 2025-01-18 03:16:34 +01:00
u
This commit is contained in:
parent
3573b74a1b
commit
dc2d8985c1
@ -1,7 +1,7 @@
|
||||
Package: daDoctoR
|
||||
Type: Package
|
||||
Title: FUNCTIONS FOR HEALTH RESEARCH
|
||||
Version: 0.1.0.9025
|
||||
Version: 0.1.0.9026
|
||||
Author: c(person("Andreas", "Gammelgaard Damsbo", email = "agdamsbo@pm.me", role = c("cre", "aut")))
|
||||
Maintainer: Andreas Gammelgaard Damsbo <agdamsbo@pm.me>
|
||||
Description: I am a Danish medical doctor involved in neuropsychiatric research.
|
||||
|
@ -6,7 +6,7 @@
|
||||
#' @param data dataframe of data.
|
||||
#' @param dec decimals for results, standard is set to 2. Mean and sd is dec-1.
|
||||
#' @param n.by.adj flag to indicate wether to count number of patients in adjusted model or overall for outcome meassure not NA.
|
||||
#' @param p.val flag to include p-values in linear regression for now, set to FALSE as standard.
|
||||
#' @param p.val flag to include p-values in table, set to FALSE as standard.
|
||||
#' @keywords logistic
|
||||
#' @export
|
||||
|
||||
@ -140,10 +140,10 @@ strobe_pred<-function(meas,adj,data,dec=2,n.by.adj=FALSE,p.val=FALSE){
|
||||
|
||||
for (i in 1:ncol(dat2)){
|
||||
if (is.factor(dat2[,i])){
|
||||
rnames<-c(rnames,names(dat2)[i],paste0(names(dat2)[i],levels(dat2[,i])))
|
||||
rnames<-c(rnames,names(dat2)[i],levels(dat2[,i]))
|
||||
}
|
||||
if (!is.factor(dat2[,i])){
|
||||
rnames<-c(rnames,paste0(names(dat2)[i],".all"),names(dat2)[i])
|
||||
rnames<-c(rnames,names(dat2[i]),"Per unit increase")
|
||||
}
|
||||
}
|
||||
res<-cbind(aor_ci,apv)
|
||||
@ -163,9 +163,16 @@ strobe_pred<-function(meas,adj,data,dec=2,n.by.adj=FALSE,p.val=FALSE){
|
||||
|
||||
suppressWarnings(re<-left_join(df,dfcr,by="names"))
|
||||
|
||||
ref<-data.frame(re[,1],re[,2],re[,5],re[,3])
|
||||
if (p.val==TRUE){
|
||||
ref<-data.frame(re[,1],re[,2],re[,5],re[,6],re[,3],re[,4])
|
||||
|
||||
names(ref)<-c("Variable",paste0("N=",n.meas),"Crude OR (95 % CI)","Mutually adjusted OR (95 % CI)")
|
||||
names(ref)<-c("Variable",paste0("N=",n.meas),"Crude OR (95 % CI)","p-value","Mutually adjusted OR (95 % CI)","A p-value")
|
||||
}
|
||||
else{
|
||||
ref<-data.frame(re[,1],re[,2],re[,5],re[,3])
|
||||
|
||||
names(ref)<-c("Variable",paste0("N=",n.meas),"Crude OR (95 % CI)","Mutually adjusted OR (95 % CI)")
|
||||
}
|
||||
|
||||
ls<-list(tbl=ref,miss,n.meas,nrow(d))
|
||||
names(ls)<-c("Printable table","Deleted due to missingness in adjusted analysis","Number of outcome observations","Length of dataframe")
|
||||
@ -297,10 +304,10 @@ strobe_pred<-function(meas,adj,data,dec=2,n.by.adj=FALSE,p.val=FALSE){
|
||||
|
||||
for (i in 1:ncol(dat2)){
|
||||
if (is.factor(dat2[,i])){
|
||||
rnames<-c(rnames,names(dat2)[i],paste0(names(dat2)[i],levels(dat2[,i])))
|
||||
rnames<-c(rnames,names(dat2)[i],levels(dat2[,i]))
|
||||
}
|
||||
if (!is.factor(dat2[,i])){
|
||||
rnames<-c(rnames,paste0(names(dat2)[i],".all"),names(dat2)[i])
|
||||
rnames<-c(rnames,names(dat2[i]),"Per unit increase")
|
||||
}
|
||||
}
|
||||
res<-cbind(amean_ci,apv)
|
||||
|
@ -18,7 +18,7 @@ strobe_pred(meas, adj, data, dec = 2, n.by.adj = FALSE,
|
||||
|
||||
\item{n.by.adj}{flag to indicate wether to count number of patients in adjusted model or overall for outcome meassure not NA.}
|
||||
|
||||
\item{p.val}{flag to include p-values in linear regression for now, set to FALSE as standard.}
|
||||
\item{p.val}{flag to include p-values in table, set to FALSE as standard.}
|
||||
}
|
||||
\description{
|
||||
Printable table of regression model according to STROBE. Includes borth bivariate and multivariate in the same table. Output is a list, with the first item being the main "output" as a dataframe. Automatically uses logistic regression model for dichotomous outcome variable and linear regression model for continous outcome variable. Linear regression will give estimated adjusted true mean in list.
|
||||
|
Loading…
x
Reference in New Issue
Block a user