mirror of
https://github.com/agdamsbo/daDoctoR.git
synced 2024-11-21 19:30:22 +01:00
New function for OLR
This commit is contained in:
parent
7c1c1e51b5
commit
d55342f624
@ -10,7 +10,8 @@ Depends: R (>= 3.4.4)
|
|||||||
Imports: broom,
|
Imports: broom,
|
||||||
dplyr,
|
dplyr,
|
||||||
epiR,
|
epiR,
|
||||||
ggplot2
|
ggplot2,
|
||||||
|
MASS
|
||||||
License: GPL (>= 2)
|
License: GPL (>= 2)
|
||||||
Encoding: UTF-8
|
Encoding: UTF-8
|
||||||
LazyData: true
|
LazyData: true
|
||||||
|
@ -19,3 +19,4 @@ export(rep_olr)
|
|||||||
export(rep_reg_cie)
|
export(rep_reg_cie)
|
||||||
export(strobe_diff_bygroup)
|
export(strobe_diff_bygroup)
|
||||||
export(strobe_diff_byvar)
|
export(strobe_diff_byvar)
|
||||||
|
export(strobe_olr)
|
||||||
|
139
R/strobe_olr.R
Normal file
139
R/strobe_olr.R
Normal file
@ -0,0 +1,139 @@
|
|||||||
|
#' Print regression results according to STROBE
|
||||||
|
#'
|
||||||
|
#' Printable table of linear regression analysis of group vs var for meas. By group.
|
||||||
|
#' @param meas outcome meassure variable name in data-data.frame as a string. Can be numeric or factor. Result is calculated accordingly.
|
||||||
|
#' @param var exposure variable to compare against (active vs placebo). As string.
|
||||||
|
#' @param adj variables to adjust for, as string.
|
||||||
|
#' @param data dataframe of data.
|
||||||
|
#' @param dec decimals for results, standard is set to 2. Mean and sd is dec-1.
|
||||||
|
#' @keywords cpr
|
||||||
|
#' @export
|
||||||
|
#' @examples
|
||||||
|
#' strobe_olr()
|
||||||
|
|
||||||
|
strobe_olr<-function(meas,var,adj,data,dec=2){
|
||||||
|
#' Ønskeliste:
|
||||||
|
#'
|
||||||
|
#' - Sum af alle, der indgår (Overall N)
|
||||||
|
#' - Ryd op i kode, der der er overflødig %-regning, alternativt, så fiks at NA'er ikke skal regnes med.
|
||||||
|
#'
|
||||||
|
require(MASS)
|
||||||
|
require(dplyr)
|
||||||
|
|
||||||
|
d<-data
|
||||||
|
m<-d[,c(meas)]
|
||||||
|
v<-d[,c(var)]
|
||||||
|
|
||||||
|
ads<-d[,c(adj)]
|
||||||
|
dat<-data.frame(m,v,ads)
|
||||||
|
df<-data.frame(matrix(ncol=4))
|
||||||
|
|
||||||
|
mn <- polr(m ~ v, data = dat, Hess=TRUE)
|
||||||
|
ma <- polr(m ~ ., data = dat, Hess=TRUE)
|
||||||
|
|
||||||
|
ctable <- coef(summary(mn))
|
||||||
|
pa <- pnorm(abs(ctable[, "t value"]), lower.tail = FALSE) * 2
|
||||||
|
pa<-ifelse(pa<0.001,"<0.001",round(pa,3))
|
||||||
|
pa <- ifelse(pa<=0.05|pa=="<0.001",paste0("*",pa),
|
||||||
|
ifelse(pa>0.05&pa<=0.1,paste0(".",pa),pa))
|
||||||
|
pv<-c("REF",pa[1:length(coef(mn))])
|
||||||
|
|
||||||
|
co<-round(exp(coef(mn)),dec)
|
||||||
|
ci<-confint(mn)
|
||||||
|
lo<-round(exp(ci[,1]),dec)
|
||||||
|
up<-round(exp(ci[,2]),dec)
|
||||||
|
|
||||||
|
or_ci<-c("REF",paste0(co," (",lo," to ",up,")"))
|
||||||
|
|
||||||
|
nr<-c()
|
||||||
|
|
||||||
|
for (r in 1:length(levels(dat[,2]))){
|
||||||
|
vr<-levels(dat[,2])[r]
|
||||||
|
dr<-dat[dat[,2]==vr,]
|
||||||
|
n<-as.numeric(nrow(dr))
|
||||||
|
|
||||||
|
## Af en eller anden grund bliver der talt for mange med.
|
||||||
|
# nall<-as.numeric(nrow(dat[!is.na(dat[,2]),]))
|
||||||
|
nl<-levels(m)[r]
|
||||||
|
# pro<-round(n/nall*100,0)
|
||||||
|
# rt<-paste0(n," (",pro,"%)")
|
||||||
|
nr<-rbind(nr,cbind(nl,n))
|
||||||
|
}
|
||||||
|
|
||||||
|
mms<-data.frame(cbind(nr,or_ci,pv))
|
||||||
|
header<-data.frame(matrix(var,ncol = ncol(mms)))
|
||||||
|
names(header)<-names(mms)
|
||||||
|
|
||||||
|
ls<-list(unadjusted=data.frame(rbind(header,mms)))
|
||||||
|
|
||||||
|
actable <- coef(summary(ma))
|
||||||
|
pa <- pnorm(abs(actable[, "t value"]), lower.tail = FALSE) * 2
|
||||||
|
pa<-ifelse(pa<0.001,"<0.001",round(pa,3))
|
||||||
|
pa <- ifelse(pa<=0.05|pa=="<0.001",paste0("*",pa),
|
||||||
|
ifelse(pa>0.05&pa<=0.1,paste0(".",pa),pa))
|
||||||
|
|
||||||
|
apv<-pa[1:length(coef(ma))]
|
||||||
|
|
||||||
|
aco<-round(exp(coef(ma)),dec)
|
||||||
|
aci<-round(exp(confint(ma)),dec)
|
||||||
|
alo<-aci[,1]
|
||||||
|
aup<-aci[,2]
|
||||||
|
aor_ci<-paste0(aco," (",alo," to ",aup,")")
|
||||||
|
|
||||||
|
dat2<-dat[,-1]
|
||||||
|
# names(dat2)<-c(var,names(ads))
|
||||||
|
nq<-c()
|
||||||
|
|
||||||
|
for (i in 1:ncol(dat2)){
|
||||||
|
if (is.factor(dat2[,i])){
|
||||||
|
vec<-dat2[,i]
|
||||||
|
ns<-names(dat2)[i]
|
||||||
|
for (r in 1:length(levels(vec))){
|
||||||
|
vr<-levels(vec)[r]
|
||||||
|
dr<-vec[vec==vr]
|
||||||
|
n<-as.numeric(length(dr))
|
||||||
|
# nall<-as.numeric(nrow(dat[!is.na(dat2[,c(ns)]),]))
|
||||||
|
nl<-paste0(ns,levels(vec)[r])
|
||||||
|
# pro<-round(n/nall*100,0)
|
||||||
|
# rt<-paste0(n," (",pro,"%)")
|
||||||
|
nq<-rbind(nq,cbind(nl,n))
|
||||||
|
}
|
||||||
|
}
|
||||||
|
if (!is.factor(dat2[,i])){
|
||||||
|
num<-dat2[,i]
|
||||||
|
ns<-names(dat2)[i]
|
||||||
|
nall<-as.numeric(nrow(dat[!is.na(dat2[,c(ns)]),]))
|
||||||
|
nq<-rbind(nq,cbind(ns,nall))
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
rnames<-c()
|
||||||
|
|
||||||
|
for (i in 1:ncol(dat2)){
|
||||||
|
if (is.factor(dat2[,i])){
|
||||||
|
rnames<-c(rnames,names(dat2)[i],paste0(names(dat2)[i],levels(dat2[,i])))
|
||||||
|
}
|
||||||
|
if (!is.factor(dat2[,i])){
|
||||||
|
rnames<-c(rnames,paste0(names(dat2)[i],".all"),names(dat2)[i])
|
||||||
|
}
|
||||||
|
}
|
||||||
|
res<-cbind(aor_ci,apv)
|
||||||
|
rest<-data.frame(names=row.names(res),res,stringsAsFactors = F)
|
||||||
|
|
||||||
|
numb<-data.frame(names=nq[,c("nl")],N=nq[,c("n")],stringsAsFactors = F)
|
||||||
|
namt<-data.frame(names=rnames,stringsAsFactors = F)
|
||||||
|
|
||||||
|
coll<-left_join(left_join(namt,numb,by="names"),rest,by="names")
|
||||||
|
|
||||||
|
header<-data.frame(matrix("Adjusted",ncol = ncol(coll)))
|
||||||
|
names(header)<-names(coll)
|
||||||
|
|
||||||
|
ls$adjusted<-data.frame(rbind(header,coll))
|
||||||
|
|
||||||
|
fnames<-c("Variable","N","OR (95 % CI)","p value")
|
||||||
|
|
||||||
|
names(ls$unadjusted)<-fnames
|
||||||
|
names(ls$adjusted)<-fnames
|
||||||
|
|
||||||
|
return(ls)
|
||||||
|
}
|
23
man/strobe_olr.Rd
Normal file
23
man/strobe_olr.Rd
Normal file
@ -0,0 +1,23 @@
|
|||||||
|
% Generated by roxygen2: do not edit by hand
|
||||||
|
% Please edit documentation in R/strobe_olr.R
|
||||||
|
\name{strobe_olr}
|
||||||
|
\alias{strobe_olr}
|
||||||
|
\title{Print regression results according to STROBE}
|
||||||
|
\usage{
|
||||||
|
strobe_olr(meas, var, adj, data, dec = 2)
|
||||||
|
}
|
||||||
|
\arguments{
|
||||||
|
\item{meas}{outcome meassure variable name in data-data.frame as a string. Can be numeric or factor. Result is calculated accordingly.}
|
||||||
|
|
||||||
|
\item{var}{exposure variable to compare against (active vs placebo). As string.}
|
||||||
|
|
||||||
|
\item{adj}{variables to adjust for, as string.}
|
||||||
|
|
||||||
|
\item{data}{dataframe of data.}
|
||||||
|
|
||||||
|
\item{dec}{decimals for results, standard is set to 2. Mean and sd is dec-1.}
|
||||||
|
}
|
||||||
|
\description{
|
||||||
|
Printable table of linear regression analysis of group vs var for meas. By group.
|
||||||
|
}
|
||||||
|
\keyword{cpr}
|
Loading…
Reference in New Issue
Block a user