mirror of
https://github.com/agdamsbo/daDoctoR.git
synced 2024-11-22 11:50:23 +01:00
universalising..
This commit is contained in:
parent
39dc511e12
commit
af0c04e5ce
23
R/rep_glm.R
23
R/rep_glm.R
@ -1,15 +1,17 @@
|
||||
#' A repeated logistic regression function
|
||||
#'
|
||||
#' @description For bivariate analyses. The confint() function is rather slow, causing the whole function to hang when including many predictors and calculating the ORs with CI.
|
||||
#' @param y Effect meassure.
|
||||
#' @param meas Effect meassure. Input as c() of columnnames, use dput().
|
||||
#' @param vars variables in model. Input as c() of columnnames, use dput().
|
||||
#' @param string variables to test. Input as c() of columnnames, use dput().
|
||||
#' @param ci flag to get results as OR with 95% confidence interval.
|
||||
#' @param data data frame to pull variables from.
|
||||
#' @keywords logistic regression
|
||||
#' @export
|
||||
#' @examples
|
||||
#' rep_glm()
|
||||
|
||||
rep_glm<-function(y,vars,string,ci=FALSE,data){
|
||||
rep_glm<-function(meas,vars,string,ci=FALSE,data){
|
||||
## x is data.frame of predictors, y is vector of an aoutcome as a factor
|
||||
## output is returned as coefficient, or if or=TRUE as OR with 95 % CI.
|
||||
##
|
||||
@ -17,8 +19,9 @@ rep_glm<-function(y,vars,string,ci=FALSE,data){
|
||||
require(dplyr)
|
||||
|
||||
d<-data
|
||||
x<-select(d,one_of(c(string)))
|
||||
v<-select(d,one_of(c(vars)))
|
||||
x<-data.frame(d[,c(string)])
|
||||
v<-data.frame(d[,c(vars)])
|
||||
y<-d[,c(meas)]
|
||||
dt<-cbind(y,v)
|
||||
m1<-length(coef(glm(y~.,family = binomial(),data = dt)))
|
||||
|
||||
@ -30,30 +33,22 @@ rep_glm<-function(y,vars,string,ci=FALSE,data){
|
||||
names(df)<-c("pred","or_ci","pv")
|
||||
|
||||
for(i in 1:ncol(x)){
|
||||
|
||||
dat<-cbind(dt,x[,i])
|
||||
|
||||
m<-glm(y~.,family = binomial(),data=dat)
|
||||
|
||||
l<-suppressMessages(round(exp(confint(m))[-c(1:m1),1],2))
|
||||
u<-suppressMessages(round(exp(confint(m))[-c(1:m1),2],2))
|
||||
or<-round(exp(coef(m))[-c(1:m1)],2)
|
||||
|
||||
or_ci<-paste0(or," (",l," to ",u,")")
|
||||
|
||||
pv<-round(tidy(m)$p.value[-c(1:m1)],3)
|
||||
|
||||
x1<-x[,i]
|
||||
|
||||
if (is.factor(x1)){
|
||||
pred<-paste(names(x)[i],levels(x1)[-1],sep = "_")
|
||||
}
|
||||
pred<-paste(names(x)[i],levels(x1)[-1],sep = "_")}
|
||||
|
||||
else {pred<-names(x)[i]}
|
||||
|
||||
df<-rbind(df,cbind(pred,or_ci,pv))
|
||||
|
||||
}}
|
||||
df<-rbind(df,cbind(pred,or_ci,pv))}}
|
||||
|
||||
if (ci==FALSE){
|
||||
|
||||
|
@ -4,14 +4,18 @@
|
||||
\alias{rep_glm}
|
||||
\title{A repeated logistic regression function}
|
||||
\usage{
|
||||
rep_glm(y, vars, string, ci = FALSE, data)
|
||||
rep_glm(meas, vars, string, ci = FALSE, data)
|
||||
}
|
||||
\arguments{
|
||||
\item{y}{Effect meassure.}
|
||||
\item{meas}{Effect meassure. Input as c() of columnnames, use dput().}
|
||||
|
||||
\item{vars}{variables in model. Input as c() of columnnames, use dput().}
|
||||
|
||||
\item{string}{variables to test. Input as c() of columnnames, use dput().}
|
||||
|
||||
\item{ci}{flag to get results as OR with 95% confidence interval.}
|
||||
|
||||
\item{data}{data frame to pull variables from.}
|
||||
}
|
||||
\description{
|
||||
For bivariate analyses. The confint() function is rather slow, causing the whole function to hang when including many predictors and calculating the ORs with CI.
|
||||
|
Loading…
Reference in New Issue
Block a user