new function and updates

This commit is contained in:
agdamsbo 2019-11-19 09:10:42 +01:00
parent bcdfb5e229
commit a40092718b
6 changed files with 241 additions and 9 deletions

View File

@ -1,13 +1,13 @@
Package: daDoctoR
Type: Package
Title: FUNCTIONS FOR HEALTH RESEARCH
Version: 0.1.0.9032
Version: 0.1.0.9033
Author: c(person("Andreas", "Gammelgaard Damsbo", email = "agdamsbo@pm.me", role = c("cre", "aut")))
Maintainer: Andreas Gammelgaard Damsbo <agdamsbo@pm.me>
Description: I am a Danish medical doctor involved in neuropsychiatric research.
Here I have collected functions I use for my data analysis. You are very
welcome to get inspired or to use my work.
Imports: broom, dplyr, epiR, ggplot2, MASS, carData
Imports: broom, dplyr, epiR, ggplot2, MASS, carData, eulerr
Suggest: shiny
License: GPL (>= 2)
Encoding: UTF-8

View File

@ -9,6 +9,7 @@ export(cpr_check)
export(cpr_sex)
export(date_convert)
export(dob_extract_cpr)
export(euler_plot)
export(hwe_allele)
export(hwe_app)
export(hwe_geno)

View File

@ -1,11 +1,11 @@
#' Calculating overlap from list of identifier numbers
#'
#' To use with eulerr package for creating Euler/Venn-diagrams.
#' Ex for creating euler diagram using the euler() function of the eulerr package.
#' @param x Date of birth.
#' Up to five (5) dimensions.
#' @param x list of variables included. Has to be vectors of identifier numbers.
#' @keywords overlap
#' @export
#' @examples
#'
calculate_overlap<-function (x)
{

213
R/euler_plot.R Normal file
View File

@ -0,0 +1,213 @@
#' Creates Euler model from list of identifier numbers.
#'
#' Calculates overlaps and uses eulerr package to create Euler/Venn-diagrams. Use plot() to create diagram.
#' Combined with an evolved calculate.overlap() from the VennDiagram library.
#' Up to five (5) dimensions. Limit set by the complexity of combinations. euler() supports more.
#' @param x list of variables included. Has to be vectors of identifier numbers.
#' @param shape same as for euler(). These includes c("circle","ellipse").
#' @keywords overlap
#' @export
euler_plot<-function (x,shape)
{
library(eulerr)
sh<-shape
if (1 == length(x)) {
overlap <- list("A"=x)
}
else if (2 == length(x)) {
overlap <- list("A" = x[[1]], "B" = x[[2]], "A&B" = intersect(x[[1]],
x[[2]]))
}
else if (3 == length(x)) {
A <- x[[1]]
B <- x[[2]]
C <- x[[3]]
nab <- intersect(A, B)
nbc <- intersect(B, C)
nac <- intersect(A, C)
nabc <- intersect(nab, C)
a5 = nabc
a2 = nab[which(!nab %in% a5)]
a4 = nac[which(!nac %in% a5)]
a6 = nbc[which(!nbc %in% a5)]
a1 = A[which(!A %in% c(a2, a4, a5))]
a3 = B[which(!B %in% c(a2, a5, a6))]
a7 = C[which(!C %in% c(a4, a5, a6))]
overlap <- list("A" = a1,
"B" = a3,
"C" = a7,
"A&B" = a2,
"B&C" = a6,
"A&C" = a4,
"A&B&C" = a5)
}
else if (4 == length(x)) {
A <- x[[1]]
B <- x[[2]]
C <- x[[3]]
D <- x[[4]]
n12 <- intersect(A, B)
n13 <- intersect(A, C)
n14 <- intersect(A, D)
n23 <- intersect(B, C)
n24 <- intersect(B, D)
n34 <- intersect(C, D)
n123 <- intersect(n12, C)
n124 <- intersect(n12, D)
n134 <- intersect(n13, D)
n234 <- intersect(n23, D)
n1234 <- intersect(n123, D)
a6 = n1234
a12 = n123[which(!n123 %in% a6)]
a11 = n124[which(!n124 %in% a6)]
a5 = n134[which(!n134 %in% a6)]
a7 = n234[which(!n234 %in% a6)]
a15 = n12[which(!n12 %in% c(a6, a11, a12))]
a4 = n13[which(!n13 %in% c(a6, a5, a12))]
a10 = n14[which(!n14 %in% c(a6, a5, a11))]
a13 = n23[which(!n23 %in% c(a6, a7, a12))]
a8 = n24[which(!n24 %in% c(a6, a7, a11))]
a2 = n34[which(!n34 %in% c(a6, a5, a7))]
a9 = A[which(!A %in% c(a4, a5, a6, a10, a11, a12, a15))]
a14 = B[which(!B %in% c(a6, a7, a8, a11, a12, a13, a15))]
a1 = C[which(!C %in% c(a2, a4, a5, a6, a7, a12, a13))]
a3 = D[which(!D %in% c(a2, a5, a6, a7, a8, a10, a11))]
overlap <- list("A" = a9,
"B" = a14,
"C" = a1,
"D" = a3,
"A&B" = a15,
"A&C" = a4,
"A&D" = a10,
"B&C" = a13,
"B&D" = a8,
"C&D" = a2,
"A&B&C" = a12,
"A&B&D" = a11,
"A&C&D" = a5,
"B&C&D" = a7,
"A&B&C&D"= a6,
a6 = a6, a12 = a12, a11 = a11, a5 = a5,
a7 = a7, a15 = a15, a4 = a4, a10 = a10, a13 = a13,
a8 = a8, a2 = a2, a9 = a9, a14 = a14, a1 = a1, a3 = a3,A=A,B=B,C=C,D=D)
}
else if (5 == length(x)) {
A <- x[[1]]
B <- x[[2]]
C <- x[[3]]
D <- x[[4]]
E <- x[[5]]
n12 <- intersect(A, B)
n13 <- intersect(A, C)
n14 <- intersect(A, D)
n15 <- intersect(A, E)
n23 <- intersect(B, C)
n24 <- intersect(B, D)
n25 <- intersect(B, E)
n34 <- intersect(C, D)
n35 <- intersect(C, E)
n45 <- intersect(D, E)
n123 <- intersect(n12, C)
n124 <- intersect(n12, D)
n125 <- intersect(n12, E)
n134 <- intersect(n13, D)
n135 <- intersect(n13, E)
n145 <- intersect(n14, E)
n234 <- intersect(n23, D)
n235 <- intersect(n23, E)
n245 <- intersect(n24, E)
n345 <- intersect(n34, E)
n1234 <- intersect(n123, D)
n1235 <- intersect(n123, E)
n1245 <- intersect(n124, E)
n1345 <- intersect(n134, E)
n2345 <- intersect(n234, E)
n12345 <- intersect(n1234, E)
a31 = n12345
a30 = n1234[which(!n1234 %in% a31)]
a29 = n1235[which(!n1235 %in% a31)]
a28 = n1245[which(!n1245 %in% a31)]
a27 = n1345[which(!n1345 %in% a31)]
a26 = n2345[which(!n2345 %in% a31)]
a25 = n245[which(!n245 %in% c(a26, a28, a31))]
a24 = n234[which(!n234 %in% c(a26, a30, a31))]
a23 = n134[which(!n134 %in% c(a27, a30, a31))]
a22 = n123[which(!n123 %in% c(a29, a30, a31))]
a21 = n235[which(!n235 %in% c(a26, a29, a31))]
a20 = n125[which(!n125 %in% c(a28, a29, a31))]
a19 = n124[which(!n124 %in% c(a28, a30, a31))]
a18 = n145[which(!n145 %in% c(a27, a28, a31))]
a17 = n135[which(!n135 %in% c(a27, a29, a31))]
a16 = n345[which(!n345 %in% c(a26, a27, a31))]
a15 = n45[which(!n45 %in% c(a18, a25, a16, a28, a27,
a26, a31))]
a14 = n24[which(!n24 %in% c(a19, a24, a25, a30, a28,
a26, a31))]
a13 = n34[which(!n34 %in% c(a16, a23, a24, a26, a27,
a30, a31))]
a12 = n13[which(!n13 %in% c(a17, a22, a23, a27, a29,
a30, a31))]
a11 = n23[which(!n23 %in% c(a21, a22, a24, a26, a29,
a30, a31))]
a10 = n25[which(!n25 %in% c(a20, a21, a25, a26, a28,
a29, a31))]
a9 = n12[which(!n12 %in% c(a19, a20, a22, a28, a29,
a30, a31))]
a8 = n14[which(!n14 %in% c(a18, a19, a23, a27, a28,
a30, a31))]
a7 = n15[which(!n15 %in% c(a17, a18, a20, a27, a28,
a29, a31))]
a6 = n35[which(!n35 %in% c(a16, a17, a21, a26, a27,
a29, a31))]
a5 = E[which(!E %in% c(a6, a7, a15, a16, a17, a18, a25,
a26, a27, a28, a31, a20, a29, a21, a10))]
a4 = D[which(!D %in% c(a13, a14, a15, a16, a23, a24,
a25, a26, a27, a28, a31, a18, a19, a8, a30))]
a3 = C[which(!C %in% c(a21, a11, a12, a13, a29, a22,
a23, a24, a30, a31, a26, a27, a16, a6, a17))]
a2 = B[which(!B %in% c(a9, a10, a19, a20, a21, a11,
a28, a29, a31, a22, a30, a26, a25, a24, a14))]
a1 = A[which(!A %in% c(a7, a8, a18, a17, a19, a9, a27,
a28, a31, a20, a30, a29, a22, a23, a12))]
overlap <- list("A" = a1,
"B" = a2,
"C" = a3,
"D" = a4,
"E" = a5,
"A&B" = a9,
"A&C" = a12,
"A&D" = a8,
"A&E" = a7,
"B&C" = a11,
"B&D" = a14,
"B&E" = a10,
"C&D" = a13,
"C&E" = a6,
"D&E" = a15,
"A&B&C" = a22,
"A&B&D" = a19,
"A&B&E" = a20,
"A&C&D" = a23,
"A&C&E" = a17,
"A&D&E" = a18,
"B&C&D" = a24,
"B&C&E" = a21,
"B&D&E" = a25,
"C&D&E" = a16,
"A&B&C&D"= a30,
"A&B&C&E"= a29,
"A&B&D&E"= a28,
"A&C&D&E"= a27,
"B&C&D&E"= a26,
"A&B&C&D&E"= a31)
}
else {
flog.error("Invalid size of input object", name = "VennDiagramLogger")
stop("Invalid size of input object")
}
eul <- euler(unlist(overlap, use.names=T),shape = sh)
return(eul)
}

View File

@ -7,12 +7,11 @@
calculate_overlap(x)
}
\arguments{
\item{x}{Date of birth.}
\item{x}{list of variables included. Has to be vectors of identifier numbers.}
}
\description{
To use with eulerr package for creating Euler/Venn-diagrams.
Ex for creating euler diagram using the euler() function of the eulerr package.
}
\examples{
Up to five (5) dimensions.
}
\keyword{overlap}

19
man/euler_plot.Rd Normal file
View File

@ -0,0 +1,19 @@
% Generated by roxygen2: do not edit by hand
% Please edit documentation in R/euler_plot.R
\name{euler_plot}
\alias{euler_plot}
\title{Creates Euler model from list of identifier numbers.}
\usage{
euler_plot(x, shape)
}
\arguments{
\item{x}{list of variables included. Has to be vectors of identifier numbers.}
\item{shape}{same as for euler(). These includes c("circle","ellipse").}
}
\description{
Calculates overlaps and uses eulerr package to create Euler/Venn-diagrams. Use plot() to create diagram.
Combined with an evolved calculate.overlap() from the VennDiagram library.
Up to five (5) dimensions. Limit set by the complexity of combinations. euler() supports more.
}
\keyword{overlap}