mirror of
https://github.com/agdamsbo/daDoctoR.git
synced 2024-11-21 19:30:22 +01:00
rewritten olr_strobe
This commit is contained in:
parent
ad91fc05f3
commit
6be25dd145
@ -1,6 +1,6 @@
|
||||
Package: daDoctoR
|
||||
Title: Functions For Health Research
|
||||
Version: 0.19.3
|
||||
Version: 0.19.4
|
||||
Year: 2019
|
||||
Author: Andreas Gammelgaard Damsbo <agdamsbo@pm.me>
|
||||
Maintainer: Andreas Gammelgaard Damsbo <agdamsbo@pm.me>
|
||||
|
142
R/strobe_olr.R
142
R/strobe_olr.R
@ -1,72 +1,132 @@
|
||||
#' Print ordinal logistic regression results according to STROBE
|
||||
#'
|
||||
#' Printable table of ordinal logistic regression analysis oaccording to STROBE. Uses polr() funtion of the MASS-package.
|
||||
#' @param meas outcome meassure variable name in data-data.frame as a string. Can be numeric or factor. Result is calculated accordingly.
|
||||
#' Printable table of ordinal logistic regression with bivariate and multivariate analyses.
|
||||
#' Table according to STROBE. Uses polr() funtion of the MASS-package.
|
||||
#' Formula analysed is the most simple m~v1+v2+vn. The is no significance test. Results are point estimates with 95 percent CI.
|
||||
#' @param meas outcome meassure variable name or response in data-data.frame as a string. Should be factor, preferably ordered.
|
||||
#' @param vars variables to compare against. As vector of columnnames.
|
||||
#' @param data dataframe of data.
|
||||
#' @param dec decimals for results, standard is set to 2. Mean and sd is dec-1.
|
||||
#' @param n.by.adj flag to indicate wether to count number of patients in adjusted model or overall for outcome meassure not NA.
|
||||
#' @keywords olr
|
||||
#' @export
|
||||
|
||||
strobe_olr<-function(meas,vars,data,dec=2){
|
||||
strobe_olr<-function(meas,vars,data,dec=2,n.by.adj=FALSE){
|
||||
|
||||
require(MASS)
|
||||
require(dplyr)
|
||||
|
||||
d<-data
|
||||
m<-d[,c(meas)]
|
||||
v<-d[,c(vars)]
|
||||
|
||||
dat<-data.frame(m,v)
|
||||
ads<-d[,c(vars)]
|
||||
|
||||
ma <- polr(m ~ ., data = dat, Hess=TRUE)
|
||||
if(!is.factor(m)){stop("'meas' should be a factor, preferably ordered.")}
|
||||
|
||||
actable <- coef(summary(ma))
|
||||
pa <- pnorm(abs(actable[, "t value"]), lower.tail = FALSE) * 2
|
||||
pa<-ifelse(pa<0.001,"<0.001",round(pa,3))
|
||||
pa <- ifelse(pa<=0.05|pa=="<0.001",paste0("*",pa),
|
||||
ifelse(pa>0.05&pa<=0.1,paste0(".",pa),pa))
|
||||
if(is.factor(m)){
|
||||
|
||||
apv<-pa[1:length(coef(ma))]
|
||||
## Crude ORs
|
||||
|
||||
dfcr<-data.frame(matrix(NA,ncol = 2))
|
||||
names(dfcr)<-c("pred","or_ci")
|
||||
n.mn<-c()
|
||||
nref<-c()
|
||||
|
||||
for(i in 1:ncol(ads)){
|
||||
dat<-data.frame(m=m,ads[,i])
|
||||
names(dat)<-c("m",names(ads)[i])
|
||||
mn<-polr(m ~ ., data = dat, Hess=TRUE)
|
||||
n.mn<-c(n.mn,nrow(mn$model))
|
||||
|
||||
suppressMessages(ci<-matrix(exp(confint(mn)),ncol=2))
|
||||
l<-round(ci[,1],dec)
|
||||
u<-round(ci[,2],dec)
|
||||
or<-round(exp(coef(mn)),dec)
|
||||
or_ci<-paste0(or," (",l," to ",u,")")
|
||||
|
||||
x1<-ads[,i]
|
||||
|
||||
if (is.factor(x1)){
|
||||
pred<-paste0(names(ads)[i],levels(x1)[-1])
|
||||
}
|
||||
|
||||
else {
|
||||
pred<-names(ads)[i]
|
||||
}
|
||||
|
||||
dfcr<-rbind(dfcr,cbind(pred,or_ci))
|
||||
}
|
||||
|
||||
|
||||
## Mutually adjusted ORs
|
||||
|
||||
dat<-data.frame(m=m,ads)
|
||||
ma <-polr(m ~ ., data = dat, Hess=TRUE)
|
||||
miss<-length(ma$na.action)
|
||||
|
||||
aco<-round(exp(coef(ma)),dec)
|
||||
aci<-round(exp(confint(ma)),dec)
|
||||
suppressMessages(aci<-round(exp(confint(ma)),dec))
|
||||
alo<-aci[,1]
|
||||
aup<-aci[,2]
|
||||
aor_ci<-paste0(aco," (",alo," to ",aup,")")
|
||||
|
||||
dat2<-ma$model[,-1]
|
||||
# names(dat2)<-c(var,names(ads))
|
||||
nq<-c()
|
||||
|
||||
if (n.by.adj==TRUE){
|
||||
dat2<-ma$model[,-1]
|
||||
for (i in 1:ncol(dat2)){
|
||||
if (is.factor(dat2[,i])){
|
||||
vec<-dat2[,i]
|
||||
ns<-names(dat2)[i]
|
||||
for (r in 1:length(levels(vec))){
|
||||
vr<-levels(vec)[r]
|
||||
dr<-vec[vec==vr]
|
||||
n<-as.numeric(length(dr))
|
||||
nall<-as.numeric(nrow(dat2))
|
||||
n<-as.numeric(length(vec[vec==vr&!is.na(vec)]))
|
||||
nall<-as.numeric(length(dat2[,c(ns)]))
|
||||
n.meas<-nall
|
||||
nl<-paste0(ns,levels(vec)[r])
|
||||
pro<-round(n/nall*100,0)
|
||||
rt<-paste0(n," (",pro,"%)")
|
||||
nq<-rbind(nq,cbind(nl,rt))
|
||||
}
|
||||
}
|
||||
}}
|
||||
if (!is.factor(dat2[,i])){
|
||||
num<-dat2[,i]
|
||||
ns<-names(dat2)[i]
|
||||
n<-as.numeric(nrow(dat2))
|
||||
nl<-names(dat2)[i]
|
||||
n<-as.numeric(length(num[!is.na(num)]))
|
||||
nall<-as.numeric(nrow(dat2))
|
||||
n.meas<-nall
|
||||
pro<-round(n/nall*100,0)
|
||||
rt<-paste0(n," (",pro,"%)")
|
||||
nq<-rbind(nq,cbind(ns,rt))
|
||||
}
|
||||
nq<-rbind(nq,cbind(nl,rt))
|
||||
}}}
|
||||
|
||||
else {
|
||||
dat2<-dat[!is.na(dat[,1]),][,-1]
|
||||
n.meas<-nrow(dat2)
|
||||
for (i in 1:ncol(dat2)){
|
||||
if (is.factor(dat2[,i])){
|
||||
vec<-dat2[,i]
|
||||
ns<-names(dat2)[i]
|
||||
for (r in 1:length(levels(vec))){
|
||||
vr<-levels(vec)[r]
|
||||
n<-as.numeric(length(vec[vec==vr&!is.na(vec)]))
|
||||
nall<-as.numeric(n.mn[i])
|
||||
nl<-paste0(ns,levels(vec)[r])
|
||||
pro<-round(n/nall*100,0)
|
||||
rt<-paste0(n," (",pro,"%)")
|
||||
nq<-rbind(nq,cbind(nl,rt))
|
||||
}}
|
||||
if (!is.factor(dat2[,i])){
|
||||
num<-dat2[,i]
|
||||
nl<-names(dat2)[i]
|
||||
n<-as.numeric(length(num[!is.na(num)]))
|
||||
nall<-as.numeric(n.meas)
|
||||
pro<-round(n/nall*100,0)
|
||||
rt<-paste0(n," (",pro,"%)")
|
||||
nq<-rbind(nq,cbind(nl,rt))
|
||||
}}
|
||||
}
|
||||
|
||||
rnames<-c()
|
||||
|
||||
for (i in 1:ncol(dat2)){
|
||||
if (is.factor(dat2[,i])){
|
||||
rnames<-c(rnames,names(dat2)[i],paste0(names(dat2)[i],levels(dat2[,i])))
|
||||
@ -75,17 +135,39 @@ strobe_olr<-function(meas,vars,data,dec=2){
|
||||
rnames<-c(rnames,paste0(names(dat2)[i],".all"),names(dat2)[i])
|
||||
}
|
||||
}
|
||||
res<-cbind(aor_ci,apv)
|
||||
rest<-data.frame(names=row.names(res),res,stringsAsFactors = F)
|
||||
rest<-data.frame(names=names(aco),aor_ci,stringsAsFactors = F)
|
||||
|
||||
numb<-data.frame(names=nq[,c("nl")],N=nq[,c("rt")],stringsAsFactors = F)
|
||||
namt<-data.frame(names=rnames,stringsAsFactors = F)
|
||||
|
||||
coll<-left_join(left_join(namt,numb,by="names"),rest,by="names")
|
||||
|
||||
df<-data.frame(coll)
|
||||
header<-data.frame(matrix(paste0("Chance of higher ",meas),ncol = ncol(coll)),stringsAsFactors = F)
|
||||
names(header)<-names(coll)
|
||||
|
||||
names(df)<-c("Variable","N","OR (95 % CI)","p value")
|
||||
df<-data.frame(rbind(header,coll),stringsAsFactors = F)
|
||||
|
||||
return(df)
|
||||
names(dfcr)[1]<-c("names")
|
||||
|
||||
suppressWarnings(re<-left_join(df,dfcr,by="names"))
|
||||
|
||||
rona<-c()
|
||||
for (i in 1:length(ads)){
|
||||
if (is.factor(ads[,i])){
|
||||
rona<-c(rona,names(ads[i]),levels(ads[,i]))}
|
||||
if (!is.factor(ads[,i])){
|
||||
rona<-c(rona,names(ads[i]),"Per unit increase")
|
||||
}
|
||||
}
|
||||
|
||||
ref<-data.frame(c(NA,rona),re[,2],re[,4],re[,3])
|
||||
|
||||
names(ref)<-c("Variable",paste0("N=",n.meas),"Bivariate OLR (95 % CI)","Mutually adjusted OLR (95 % CI)")
|
||||
|
||||
ls<-list(tbl=ref,miss,n.meas,nrow(d))
|
||||
names(ls)<-c("Printable table","Deleted due to missingness in adjusted analysis","Number of outcome observations","Length of dataframe")
|
||||
}
|
||||
|
||||
|
||||
return(ls)
|
||||
}
|
||||
|
@ -4,18 +4,22 @@
|
||||
\alias{strobe_olr}
|
||||
\title{Print ordinal logistic regression results according to STROBE}
|
||||
\usage{
|
||||
strobe_olr(meas, vars, data, dec = 2)
|
||||
strobe_olr(meas, vars, data, dec = 2, n.by.adj = FALSE)
|
||||
}
|
||||
\arguments{
|
||||
\item{meas}{outcome meassure variable name in data-data.frame as a string. Can be numeric or factor. Result is calculated accordingly.}
|
||||
\item{meas}{outcome meassure variable name or response in data-data.frame as a string. Should be factor, preferably ordered.}
|
||||
|
||||
\item{vars}{variables to compare against. As vector of columnnames.}
|
||||
|
||||
\item{data}{dataframe of data.}
|
||||
|
||||
\item{dec}{decimals for results, standard is set to 2. Mean and sd is dec-1.}
|
||||
|
||||
\item{n.by.adj}{flag to indicate wether to count number of patients in adjusted model or overall for outcome meassure not NA.}
|
||||
}
|
||||
\description{
|
||||
Printable table of ordinal logistic regression analysis oaccording to STROBE. Uses polr() funtion of the MASS-package.
|
||||
Printable table of ordinal logistic regression with bivariate and multivariate analyses.
|
||||
Table according to STROBE. Uses polr() funtion of the MASS-package.
|
||||
Formula analysed is the most simple m~v1+v2+vn. The is no significance test. Results are point estimates with 95 percent CI.
|
||||
}
|
||||
\keyword{olr}
|
||||
|
Loading…
Reference in New Issue
Block a user